Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cartilage ; 8(4): 406-416, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28934879

RESUMEN

Objective To evaluate a biphasic cartilage repair device (CRD) for feasibility of arthroscopic implantation, safety, biocompatibility, and efficacy for long-term repair of large osteochondral defects. Methods The CRD was press-fit into defects (10 mm diameter, 10 mm deep) created in the femoral trochlea of 12 horses. In the contralateral limb, 10 mm diameter full-thickness chondral defects were treated with microfracture (MFX). Radiographs were obtained pre- and postoperatively, and at 4, 12, and 24 months. Repeat arthroscopy was performed at 4 and 12 months. Gross assessment, histology, mechanical testing, and magnetic resonance imaging (MRI) were performed at 24 months. Results The CRD was easily placed arthroscopically. There was no evidence of joint infection, inflammation, or degeneration. CRD-treated defects had significantly more sclerosis compared to MFX early ( P = 0.0006), but was not different at 24 months. CRD had better arthroscopic scores at 4 months compared to MFX ( P = 0.0069). At 24 months, there was no difference in repair tissue on histology or mechanical testing. Based on MRI, CRD repair tissue had less proteoglycan (deep P = 0.027, superficial P = 0.015) and less organized collagen (deep P = 0.028) compared to MFX. Cartilage surrounding MFX defects had more fissures compared to CRD. Conclusion The repair tissue formed after CRD treatment of a large osteochondral lesion is fibrocartilage similar to that formed in simple chondral defects treated with MFX. The CRD can be easily placed arthroscopically, is safe, and biocompatible for 24 months. The CRD results in improved early arthroscopic repair scores and may limit fissure formation in adjacent cartilage.

2.
Cartilage ; 4(2): 111-20, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26069654

RESUMEN

OBJECTIVE: The aim of this study was to determine if the noninvasive or minimally invasive and nondestructive imaging techniques of quantitative T2-mapping or multiphoton microscopy (MPM) respectively, could detect differences in cartilage collagen orientation similar to polarized light microscopy (PLM). It was hypothesized that MRI, MPM, and PLM would all detect quantitative differences between repair and normal cartilage tissue. METHODS: Osteochondral defects in the medial femoral condyle were created and repaired in 5 mature goats. Postmortem, MRI with T2-mapping and histology were performed. T2 maps were generated and a mean T2 value was calculated for each region of interest. Histologic slides were assessed using MPM with measurements of autocorrelation ellipticity, and by PLM with application of a validated scoring method. Collagen orientation using each of the 3 modalities (T2-mapping, MPM, and PLM) was measured in the center of the repair tissue and compared to remote, normal cartilage. RESULTS: MRI, MPM, and PLM were able to detect a significant difference between repair and normal cartilage (n = 5). The average T2 value was longer for repair tissue (41.43 ± 9.81 ms) compared with normal cartilage (27.12 ± 14.22 ms; P = 0.04); MPM autocorrelation ellipticity was higher in fibrous tissue (3.75 ± 1.17) compared with normal cartilage (2.24 ± 0.51; P = 0.01); the average PLM score for repair tissue was lower (1.6 ± 1.02) than the score for remote normal cartilage (4.4 ± 0.42; P = 0.002). The strongest correlation among the methods was between MRI and PLM (r = -0.76; P = 0.01), followed by MPM and PLM (r = -0.58; P = 0.08), with the weakest correlation shown between MRI and MPM (r = 0.35; P = 0.31). CONCLUSION: All 3 imaging methods quantitatively measured differences in collagen orientation between repair and normal cartilage, but at very different levels of resolution. PLM is destructive to tissue and requires euthanasia, but because MPM can be used arthroscopically, both T2-mapping and MPM can be performed in vivo, offering nondestructive means to assess collagen orientation that could be used to obtain longitudinal data in cartilage repair studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA