Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916866

RESUMEN

Agave lechuguilla waste biomass (guishe) is an undervalued abundant plant material with natural active compounds such as flavonoids. Hence, the search and conservation of flavonoids through the different productive areas have to be studied to promote the use of this agro-residue for industrial purposes. In this work, we compared the proportion of total flavonoid content (TFC) among the total polyphenolics (TPC) and described the variation of specific flavonoid profiles (HPLC-UV-MS/MS) of guishe from three locations. Descriptive environmental analysis, using remote sensing, was used to understand the phytochemical variability among the productive regions. Furthermore, the effect of extractive solvent (ethanol and methanol) and storage conditions on specific flavonoid recovery were evaluated. The highest TPC (16.46 ± 1.09 GAE/g) was observed in the guishe from region 1, which also had a lower normalized difference water index (NDWI) and lower normalized difference vegetation index (NDVI). In contrast, the TFC was similar in the agro-residue from the three studied areas, suggesting that TFC is not affected by the studied environmental features. The highest TFC was found in the ethanolic extracts (6.32 ± 1.66 QE/g) compared to the methanolic extracts (3.81 ± 1.14 QE/g). Additionally, the highest diversity in flavonoids was found in the ethanolic extract of guishe from region 3, which presented an intermedia NDWI and a lower NDVI. Despite the geo-climatic induced variations of the phytochemical profiles, the results confirm that guishe is a valuable raw material in terms of its flavonoid-enriched bioactive extracts. Additionally, the bioactive flavonoids remain stable when the conditioned agro-residue was hermetically stored at room temperature in the dark for nine months. Finally, the results enabled the establishment of both agro-ecological and biotechnological implications.

2.
Plant Sci ; 305: 110748, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33691954

RESUMEN

Agave lechuguilla is one of the most abundant species in arid and semiarid regions of Mexico, and is used to extract fiber. However, 85 % of the harvested plant material is discarded. Previous bioprospecting studies of the waste biomass suggest the presence of bioactive compounds, although the extraction process limited metabolite characterization. This work achieved flavonoid profiling of A. lechuguilla in both processed and non-processed leaf tissues using transcriptomic analysis. Functional annotation of the first de novo transcriptome of A. lechuguilla (255.7 Mbp) allowed identifying genes coding for 33 enzymes and 8 transcription factors involved in flavonoid biosynthesis. The flavonoid metabolic pathway was mostly elucidated by HPLC-MS/MS screening of alcoholic extracts. Key genes of flavonoid synthesis were higher expressed in processed leaf tissues than in non-processed leaves, suggesting a high content of flavonoids and glycoside derivatives in the waste biomass. Targeted HPLC-UV-MS analyses confirmed the concentration of isorhamnetin (1251.96 µg), flavanone (291.51 µg), hesperidin (34.23 µg), delphinidin (24.23 µg), quercetin (15.57 µg), kaempferol (13.71 µg), cyanidin (12.32 µg), apigenin (9.70 µg) and catechin (7.91 µg) per gram of dry residue. Transcriptomic and biochemical profiling concur in the potential of lechuguilla by-products with a wide range of applications in agriculture, feed, food, cosmetics, and pharmaceutical industries.


Asunto(s)
Agave/química , Agave/genética , Agave/metabolismo , Biomasa , Flavonoides/metabolismo , Extractos Vegetales/química , Residuos/análisis , Perfilación de la Expresión Génica , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA