Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765140

RESUMEN

Giardia lamblia is a highly infectious protozoan that causes giardiasis, a gastrointestinal disease with short-term and long-lasting symptoms. The currently available drugs for giardiasis treatment have limitations such as side effects and drug resistance, requiring the search for new antigiardial compounds. Drug repurposing has emerged as a promising strategy to expedite the drug development process. In this study, we evaluated the cytotoxic effect of terfenadine on Giardia lamblia trophozoites. Our results showed that terfenadine inhibited the growth and cell viability of Giardia trophozoites in a time-dose-dependent manner. In addition, using scanning electron microscopy, we identified morphological damage; interestingly, an increased number of protrusions on membranes and tubulin dysregulation with concomitant dysregulation of Giardia GiK were observed. Importantly, terfenadine showed low toxicity for Caco-2 cells, a human intestinal cell line. These findings highlight the potential of terfenadine as a repurposed drug for the treatment of giardiasis and warrant further investigation to elucidate its precise mechanism of action and evaluate its efficacy in future research.

2.
Antibiotics (Basel) ; 11(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36140009

RESUMEN

Salmonella spp. is one of the most common food poisoning pathogens and the main cause of diarrheal diseases in humans in developing countries. The increased Salmonella resistance to antimicrobials has led to the search for new alternatives, including natural compounds such as curcumin, which has already demonstrated a bactericidal effect; however, in Gram-negatives, there is much controversy about this effect, as it is highly variable. In this study, we aimed to verify the antibacterial activity of curcumin against the Salmonella enterica serovar Typhimurium growth rate, virulence, and pathogenicity. The strain was exposed to 110, 220 or 330 µg/mL curcumin, and by complementary methods (spectrophotometric, pour plate and MTT assays), we determined its antibacterial activity. To elucidate whether curcumin regulates the expression of virulence genes, Salmonella invA, fliC and siiE genes were investigated by quantitative real-time reverse transcription (qRT-PCR). Furthermore, to explore the effect of curcumin on the pathogenesis process in vivo, a Caenorhabditis elegans infection model was employed. No antibacterial activity was observed, even at higher concentrations of curcumin. All concentrations of curcumin caused overgrowth (35−69%) and increased the pathogenicity of the bacterial strain through the overexpression of virulence factors. The latter coincided with a significant reduction in both the lifespan and survival time of C. elegans when fed with curcumin-treated bacteria. Our data provide relevant information that may support the selective antibacterial effects of curcumin to reconsider the indiscriminate use of this phytochemical, especially in outbreaks of pathogenic Gram-negative bacteria.

3.
Parasitol Res ; 120(3): 1067-1076, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33515065

RESUMEN

Giardia intestinalis is a human parasite that causes a diarrheal disease in developing countries. G. intestinalis has a cytoskeleton (CSK) composed of microtubules and microfilaments, and the Giardia genome does not code for the canonical CSK-binding proteins described in other eukaryotic cells. To identify candidate actin and tubulin cross-linking proteins, we performed a BLAST analysis of the Giardia genome using a spectraplakins consensus sequence as a query. Based on the highest BLAST score, we selected a 259-kDa sequence designated as a cytoskeleton linker protein (CLP259). The sequence was cloned in three fragments and characterized by immunoprecipitation, confocal microscopy, and mass spectrometry (MS). CLP259 was located in the cytoplasm in the form of clusters of thick rods and colocalized with actin at numerous sites and with tubulin in the median body. Immunoprecipitation followed by mass spectrometry revealed that CLP259 interacts with structural proteins such as giardins, SALP-1, axonemal, and eight coiled-coils. The vesicular traffic proteins detected were Mu adaptin, Vacuolar ATP synthase subunit B, Bip, Sec61 alpha, NSF, AP complex subunit beta, and dynamin. These results indicate that CLP259 in trophozoites is a CSK linker protein for actin and tubulin and could act as a scaffold protein driving vesicular traffic.


Asunto(s)
Actinas/metabolismo , Giardia lamblia/metabolismo , Plaquinas/metabolismo , Tubulina (Proteína)/metabolismo , Actinas/química , Secuencia de Aminoácidos , Animales , Ancirinas/química , Secuencia de Bases , Western Blotting , Biología Computacional , Secuencia de Consenso , Citoplasma/química , Citoesqueleto/química , Citoesqueleto/fisiología , Citoesqueleto/ultraestructura , Dinaminas/análisis , Femenino , Técnica del Anticuerpo Fluorescente , Giardia lamblia/química , Giardia lamblia/ultraestructura , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Plaquinas/química , Alineación de Secuencia , Tubulina (Proteína)/química
4.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287104

RESUMEN

Giardia lamblia is a flagellated protozoan responsible for giardiasis, a worldwide diarrheal disease. The adverse effects of the pharmacological treatments and the appearance of drug resistance have increased the rate of therapeutic failures. In the search for alternative therapeutics, drug repositioning has become a popular strategy. Acetylsalicylic acid (ASA) exhibits diverse biological activities through multiple mechanisms. However, the full spectrum of its activities is incompletely understood. In this study we show that ASA displayed direct antigiardial activity and affected the adhesion and growth of trophozoites in a time-dose-dependent manner. Electron microscopy images revealed remarkable morphological alterations in the membrane, ventral disk, and caudal region. Using mass spectrometry and real-time quantitative reverse transcription (qRT-PCR), we identified that ASA induced the overexpression of heat shock protein 70 (HSP70). ASA also showed a significant increase of five ATP-binding cassette (ABC) transporters (giABC, giABCP, giMDRP, giMRPL and giMDRAP1). Additionally, we found low toxicity on Caco-2 cells. Taken together, these results suggest an important role of HSPs and ABC drug transporters in contributing to stress tolerance and protecting cells from ASA-induced stress.

5.
Neurotox Res ; 38(2): 447-460, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32410195

RESUMEN

Several pathophysiological processes involve Hypoxia conditions, where the nervous system is affected as well. We postulate that the GABAergic system is especially sensitive. Furthermore, drugs improving the resistance to hypoxia have been investigated, such as the neurosteroid dehydroepiandrosterone sulfate (DHEAS) which has shown beneficial effects in hypoxic processes in mammals; however, at the cellular level, its exact mechanism of action has yet to be fully elucidated. Here, we used a chemical hypoxia model through sodium sulfite (SS) exposure in Caenorhabditis elegans (C. elegans), a nematode whose response to hypoxia involves pathways and cellular processes conserved in mammals, and that allows study the direct effect of DHEAS without its conversion to sex hormones. This work aimed to determine the effect of DHEAS on damage to the GABAergic system associated with SS exposure in C. elegans. Worms were subjected to nose touch response (Not Assay) and observed in epifluorescence microscopy. DHEAS decreased the shrinkage response of Not Assay and the level of damage in GABAergic neurons on SS-exposed worms. Also, the enhanced nuclear localization of DAF-16 and consequently the overexpression of chaperone HSP-16.2 by hypoxia were significantly reduced in SS + DHEAS exposed worms. As well, DHEAS increased the survival rate of worms exposed to hydrogen peroxide. These results suggest that hypoxia-caused damage over the GABAergic system was prevented at least partially by DHEAS, probably through non-genomic mechanisms that involve its antioxidant properties related to its chemical structure.


Asunto(s)
Antioxidantes/farmacología , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Sulfato de Deshidroepiandrosterona/farmacología , Factores de Transcripción Forkhead/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Proteínas de Choque Térmico/efectos de los fármacos , Hipoxia/metabolismo , Sulfitos/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrógeno/toxicidad , Hipoxia/patología , Microscopía Fluorescente , Oxidantes/toxicidad , Transducción de Señal , Tasa de Supervivencia
6.
Artículo en Inglés | MEDLINE | ID: mdl-31681620

RESUMEN

Pet and EspC are toxins secreted by enteroaggregative (EAEC) and enteropathogenic (EPEC) diarrheagenic Escherichia coli pathotypes, respectively. Both toxins are members of the Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) family. Pet and EspC are important virulence factors that produce cytotoxic and enterotoxic effects on enterocytes. Here, we evaluated the effect of curcumin, a polyphenolic compound obtained from the rhizomes of Curcuma longa L. (Zingiberaceae) on the secretion and cytotoxic effects of Pet and EspC proteins. We found that curcumin prevents Pet and EspC secretion without affecting bacterial growth or the expression of pet and espC. Our results show that curcumin affects the release of these SPATEs from the translocation domain, thereby affecting the pathogenesis of EAEC and EPEC. Curcumin-treated EAEC and EPEC did not induce significant cell damage like the ability to disrupt the actin cytoskeleton, without affecting their characteristic adherence patterns on epithelial cells. A molecular model of docking predicted that curcumin interacts with the determinant residues Asp1018-Asp1019 and Asp1029-Asp1030 of the translocation domain required for the release of Pet and EspC, respectively. Consequently, curcumin blocks Pet and EspC cytotoxicity on epithelial cells by preventing their release from the outer membrane.


Asunto(s)
Membrana Externa Bacteriana/metabolismo , Toxinas Bacterianas/metabolismo , Curcumina/farmacología , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/fisiología , Enterotoxinas/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidasas/metabolismo , Toxinas Bacterianas/química , Sitios de Unión , Curcumina/química , Citoesqueleto/metabolismo , Enterotoxinas/química , Proteínas de Escherichia coli/química , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Proteolisis , Serina Endopeptidasas/química , Relación Estructura-Actividad
7.
Pathogens ; 8(3)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443160

RESUMEN

Infection with the enteric protozoan Entamoeba histolytica is still a serious public health problem, especially in developing countries. Amoebic liver abscess (ALA) is the most common extraintestinal manifestation of the amoebiasis, and it can lead to serious and potentially life-threatening complications in some people. ALA can be cured by metronidazole (MTZ); however, because it has poor activity against luminal trophozoites, 40-60% of treated patients get repeated episodes of invasive disease and require repeated treatments that can induce resistance to MTZ, this may emerge as an important public health problem. Anti-virulence strategies that impair the virulence of pathogens are one of the novel approaches to solving the problem. In this study, we found that low doses of curcumin (10 and 50 µM) attenuate the virulence of E. histolytica without affecting trophozoites growth or triggering liver injury. Curcumin (CUR) decreases the expression of genes associated with E. histolytica virulence (gal/galnac lectin, ehcp1, ehcp5, and amoebapore), and is correlated with significantly lower amoebic invasion. In addition, oxidative stress is critically involved in the etiopathology of amoebic liver abscess; our results show no changes in mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT) after E. histolytica infection, with or without CUR. This study provides clear evidence that curcumin could be an anti-virulence agent against E. histolytica, and makes it an attractive potential starting point for effective treatments that reduce downstream amoebic liver abscess.

8.
Oxid Med Cell Longev ; 2019: 1302985, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354899

RESUMEN

The therapeutic effects of telmisartan, an angiotensin II receptor antagonist and a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, have been demonstrated in several disorders. It has antioxidant and immune response modulator properties and has shown promising results in the treatment of an ischemia/reperfusion (I/R) lesion. In this study, a skeletal muscle (right gastrocnemius muscle) I/R lesion was induced in rats and different reperfusion times (1 h, 24 h, 72 h, 7-day, and 14-day subgroups) were assessed. Furthermore, levels of oxidative markers such as enzymatic scavengers (catalase (CAT) and superoxide dismutase (SOD)) and metabolites (nitrates and 8-oxo-deoxyguanosine) were determined. The degree of tissue injury (total lesioned fibers and inflammatory cell count) was also evaluated. We observed an increase in CAT and SOD expression levels under telmisartan treatment, with a decrease in injury and oxidative biomarker levels in the 72 h, 7-day, and 14-day subgroups. Telmisartan reduced oxidative stress and decreased the damage of the I/R lesion.


Asunto(s)
Antihipertensivos/uso terapéutico , Isquemia/tratamiento farmacológico , Telmisartán/uso terapéutico , Animales , Antihipertensivos/farmacología , Humanos , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Daño por Reperfusión , Telmisartán/farmacología
9.
PeerJ ; 7: e6430, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30834181

RESUMEN

BACKGROUND: The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs against Giardia infection is essential. In protozoa, ionic channels have roles in their life cycle, growth, and stress response. Thus, they are promising targets for drug design. The strategy of ligand-protein docking has demonstrated a great potential in the discovery of new targets and structure-based drug design studies. METHODS: In this work, we identify and characterize a new potassium channel, GiK, in the genome of Giardia lamblia. Characterization was performed in silico. Because its crystallographic structure remains unresolved, homology modeling was used to construct the three-dimensional model for the pore domain of GiK. The docking virtual screening approach was employed to determine whether GiK is a good target for potassium channel blockers. RESULTS: The GiK sequence showed 24-50% identity and 50-90% positivity with 21 different types of potassium channels. The quality assessment and validation parameters indicated the reliability of the modeled structure of GiK. We identified 110 potassium channel blockers exhibiting high affinity toward GiK. A total of 39 of these drugs bind in three specific regions. DISCUSSION: The GiK pore signature sequence is related to the small conductance calcium-activated potassium channels (SKCa). The predicted binding of 110 potassium blockers to GiK makes this protein an attractive target for biological testing to evaluate its role in the life cycle of Giardia lamblia and potential candidate for the design of novel antigiardial drugs.

10.
J Pharm Pharmacol ; 70(3): 426-433, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29411390

RESUMEN

OBJECTIVES: This study was undertaken to investigate the amoebicidal potential of curcumin on Entamoeba histolytica, as well as its synergistic effect with metronidazole. METHODS: Entamoeba histolytica trophozoites were exposed to 100, 200 and 300 µm of curcumin, for 6, 12 and 24 h. Consequently, the viability of cells was determined by trypan blue exclusion test. All specimens were further analysed by scanning electron microscopy. For drug combination experiment, the Chou-Talalay method was used. KEY FINDINGS: Curcumin affected the growth and cell viability in a time- and dose-dependent manner. The higher inhibitory effects were observed with 300 µm at 24 h; 65.5% of growth inhibition and only 28.8% of trophozoites were viable. Additionally, curcumin also altered adhesion and the morphology of the trophozoites. Scanning electron microscopy revealed treated trophozoites with damages on the membrane, size alterations and parasites with loss of cellular integrity. In addition, the combination of curcumin + metronidazole exhibited a synergistic effect; the activity of both drugs was improved. CONCLUSIONS: This is the first report evaluating the effectiveness of curcumin against E. histolytica. Our results suggest that CUR could be considered for evaluation in future pharmacological studies as a promising amoebicidal agent or as complementary therapy.


Asunto(s)
Curcumina/farmacología , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/crecimiento & desarrollo , Trofozoítos/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Metronidazol/farmacología , Pruebas de Sensibilidad Parasitaria , Trofozoítos/crecimiento & desarrollo , Trofozoítos/ultraestructura
11.
Acta Trop ; 172: 113-121, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28465123

RESUMEN

Giardia lamblia is a worldwide protozoan responsible for a significant number of intestinal infections. There are several drugs for the treatment of giardiasis, but they often cause side effects. Curcumin, a component of turmeric, has antigiardial activity; however, the molecular target and mechanism of antiproliferative activity are not clear. The effects of curcumin on cellular microtubules have been widely investigated. Since tubulin is the most abundant protein in the cytoskeleton of Giardia, to elucidate whether curcumin has activity against the microtubules of this parasite, we treated trophozoites with curcumin and the cells were analyzed by scanning electron microscopy and confocal microscopy. Curcumin inhibited Giardia proliferation and adhesion in a time-concentration-dependent mode. The higher inhibitory concentrations of curcumin (3 and 15µM) disrupted the cytoskeletal structures of trophozoites; the damage was evident on the ventral disk, flagella and in the caudal region, also the membrane was affected. The immunofluorescence images showed altered distribution of tubulin staining on ventral disk and flagella. Additionally, we found that curcumin caused a clear reduction of tubulin expression. By docking analysis and molecular dynamics we showed that curcumin has a high probability to bind at the interface of the tubulin dimer close to the vinblastine binding site. All the data presented indicate that curcumin may inhibit Giardia proliferation by perturbing microtubules.


Asunto(s)
Curcumina/farmacología , Giardia lamblia/efectos de los fármacos , Trofozoítos/efectos de los fármacos , Animales , Flagelos , Microscopía Electrónica de Rastreo , Microtúbulos/fisiología , Trofozoítos/citología , Tubulina (Proteína)/metabolismo
12.
Molecules ; 22(5)2017 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-28505094

RESUMEN

Giardiasis, a diarrheal disease, is highly prevalent in developing countries. Several drugs are available for the treatment of this parasitosis; unfortunately, all of them have variable efficacies and adverse effects. Bursera fagaroides has been known for its anti-inflammatory and antidiarrheal properties in Mexican traditional medicine. We investigated the in vitro anti-giardial activities of four podophyllotoxin-type lignans from Bursera fagaroides var. fagaroides, namely, 5'-desmethoxy-ß-peltatin-A-methylether (5-DES), acetylpodophyllotoxin (APOD), burseranin (BUR), and podophyllotoxin (POD). All lignans affected the Giardia adhesion and electron microscopy images revealed morphological alterations in the caudal region, ventral disk, membrane, and flagella, to different extents. Only 5-DES, APOD, and POD caused growth inhibition. Using the Caco-2 human cell line as a model of the intestinal epithelium, we demonstrated that APOD displayed direct antigiardial killing activity and low toxicity on Caco-2 cells. This finding makes it an attractive potential starting point for new antigiardial drugs.


Asunto(s)
Antiprotozoarios/farmacología , Bursera/química , Podofilotoxina/farmacología , Antiprotozoarios/química , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Podofilotoxina/química
13.
Oxid Med Cell Longev ; 2016: 7190943, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28116037

RESUMEN

Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.


Asunto(s)
Estrés Oxidativo , Daño por Reperfusión/patología , Animales , Complejo I de Transporte de Electrón/metabolismo , Humanos , Poscondicionamiento Isquémico , Mitocondrias/metabolismo , Oxígeno/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Daño por Reperfusión/metabolismo
14.
PLoS One ; 4(9): e7156, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19774081

RESUMEN

BACKGROUND: Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. METHODOLOGY AND PRINCIPAL FINDINGS: By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of fluorescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%). CONCLUSIONS AND SIGNIFICANCE: All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression.


Asunto(s)
Actinas/fisiología , Giardia lamblia/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Citocalasina D/química , Depsipéptidos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Giardia lamblia/fisiología , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , Modelos Biológicos , Faloidina/análogos & derivados , Faloidina/farmacología , Ratas , Ratas Wistar , Rodaminas/farmacología , Tiazolidinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA