Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1970, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031257

RESUMEN

Adeno-associated virus (AAV)-based gene therapy could be facilitated by the development of molecular switches to control the magnitude and timing of expression of therapeutic transgenes. RNA interference (RNAi)-based approaches hold unique potential as a clinically proven modality to pharmacologically regulate AAV gene dosage in a sequence-specific manner. We present a generalizable RNAi-based rheostat wherein hepatocyte-directed AAV transgene expression is silenced using the clinically validated modality of chemically modified small interfering RNA (siRNA) conjugates or vectorized co-expression of short hairpin RNA (shRNA). For transgene induction, we employ REVERSIR technology, a synthetic high-affinity oligonucleotide complementary to the siRNA or shRNA guide strand to reverse RNAi activity and rapidly recover transgene expression. For potential clinical development, we report potent and specific siRNA sequences that may allow selective regulation of transgenes while minimizing unintended off-target effects. Our results establish a conceptual framework for RNAi-based regulatory switches with potential for infrequent dosing in clinical settings to dynamically modulate expression of virally-delivered gene therapies.


Asunto(s)
Dependovirus , Terapia Genética , Interferencia de ARN , Dependovirus/genética , Dependovirus/metabolismo , ARN Interferente Pequeño/metabolismo , Transgenes , ARN Bicatenario , Vectores Genéticos/genética
3.
Proc Natl Acad Sci U S A ; 112(31): E4281-7, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195741

RESUMEN

Studies of human genetics and pathophysiology have implicated the regulation of autophagy in inflammation, neurodegeneration, infection, and autoimmunity. These findings have motivated the use of small-molecule probes to study how modulation of autophagy affects disease-associated phenotypes. Here, we describe the discovery of the small-molecule probe BRD5631 that is derived from diversity-oriented synthesis and enhances autophagy through an mTOR-independent pathway. We demonstrate that BRD5631 affects several cellular disease phenotypes previously linked to autophagy, including protein aggregation, cell survival, bacterial replication, and inflammatory cytokine production. BRD5631 can serve as a valuable tool for studying the role of autophagy in the context of cellular homeostasis and disease.


Asunto(s)
Autofagia/efectos de los fármacos , Genética Médica , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Bacterias/efectos de los fármacos , Proteínas Portadoras/metabolismo , Agregación Celular/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo , Péptidos/metabolismo , Fenotipo , Bibliotecas de Moléculas Pequeñas/química
4.
J Am Chem Soc ; 137(16): 5563-8, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25860544

RESUMEN

Lysosomes perform a critical cellular function as a site of degradation for diverse cargoes including proteins, organelles, and pathogens delivered through distinct pathways, and defects in lysosomal function have been implicated in a number of diseases. Recent studies have elucidated roles for the lysosome in the regulation of protein synthesis, metabolism, membrane integrity, and other processes involved in homeostasis. Complex small-molecule natural products have greatly contributed to the investigation of lysosomal function in cellular physiology. Here we report the discovery of a novel, small-molecule modulator of lysosomal acidification derived from diversity-oriented synthesis through high-content screening.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Lisosomas/metabolismo , Macrólidos/farmacología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores
5.
ACS Chem Biol ; 8(12): 2724-2733, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24168452

RESUMEN

Autophagy is an evolutionarily conserved catabolic process that directs cytoplasmic proteins, organelles and microbes to lysosomes for degradation. Autophagy acts at the intersection of pathways involved in cellular stress, host defense, and modulation of inflammatory and immune responses; however, the details of how the autophagy network intersects with these processes remain largely undefined. Given the role of autophagy in several human diseases, it is important to determine the extent to which modulators of autophagy also modify inflammatory or immune pathways and whether it is possible to modulate a subset of these pathways selectively. Here, we identify small-molecule inducers of basal autophagy (including several FDA-approved drugs) and characterize their effects on IL-1ß production, autophagic engulfment and killing of intracellular bacteria, and development of Treg, TH17, and TH1 subsets from naïve T cells. Autophagy inducers with distinct, selective activity profiles were identified that reveal the functional architecture of connections between autophagy, and innate and adaptive immunity. In macrophages from mice bearing a conditional deletion of the essential autophagy gene Atg16L1, the small molecules inhibit IL-1ß production to varying degrees suggesting that individual compounds may possess both autophagy-dependent and autophagy-independent activity on immune pathways. The small molecule autophagy inducers constitute useful probes to test the contributions of autophagy-related pathways in diseases marked by impaired autophagy or elevated IL-1ß and to test novel therapeutic hypotheses.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Autofagia/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Autofagia/inmunología , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Regulación de la Expresión Génica , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Factores Inmunológicos/química , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células TH1/citología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th17/citología , Células Th17/efectos de los fármacos , Células Th17/inmunología
6.
Gastroenterology ; 145(6): 1347-57, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23973919

RESUMEN

BACKGROUND & AIMS: Intestinal epithelial cells aid in mucosal defense by providing a physical barrier against entry of pathogenic bacteria and secreting antimicrobial peptides (AMPs). Autophagy is an important component of immune homeostasis. However, little is known about its role in specific cell types during bacterial infection in vivo. We investigated the role of autophagy in the response of intestinal epithelial and antigen-presenting cells to Salmonella infection in mice. METHODS: We generated mice deficient in Atg16l1 in epithelial cells (Atg16l1(f/f) × Villin-cre) or CD11c(+) cells (Atg16l1(f/f) × CD11c-cre); these mice were used to assess cell type-specific antibacterial autophagy. All responses were compared with Atg16l1(f/f) mice (controls). Mice were infected with Salmonella enterica serovar typhimurium; cecum and small-intestine tissues were collected for immunofluorescence, histology, and quantitative reverse-transcription polymerase chain reaction analyses of cytokines and AMPs. Modulators of autophagy were screened to evaluate their effects on antibacterial responses in human epithelial cells. RESULTS: Autophagy was induced in small intestine and cecum after infection with S typhimurium, and required Atg16l1. S typhimurium colocalized with microtubule-associated protein 1 light chain 3ß (Map1lc3b or LC3) in the intestinal epithelium of control mice but not in Atg16l1(f/f) × Villin-cre mice. Atg16l1(f/f) × Villin-cre mice also had fewer Paneth cells and abnormal granule morphology, leading to reduced expression of AMPs. Consistent with these defective immune responses, Atg16l1(f/f) × Villin-cre mice had increased inflammation and systemic translocation of bacteria compared with control mice. In contrast, we observed few differences between Atg16l1(f/f) × CD11c-cre and control mice. Trifluoperazine promoted autophagy and bacterial clearance in HeLa cells; these effects were reduced upon knockdown of ATG16L1. CONCLUSIONS: Atg16l1 regulates autophagy in intestinal epithelial cells and is required for bacterial clearance. It also is required to prevent systemic infection of mice with enteric bacteria.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/fisiología , Mucosa Intestinal/fisiología , Salmonelosis Animal/prevención & control , Animales , Proteínas Relacionadas con la Autofagia , Antígeno CD11c/fisiología , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Células HeLa , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Salmonelosis Animal/patología , Salmonelosis Animal/fisiopatología , Salmonella typhimurium/aislamiento & purificación
7.
Annu Rev Immunol ; 30: 611-46, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22449030

RESUMEN

Stressors ranging from nutrient deprivation to immune signaling can induce the degradation of cytoplasmic material by a process known as autophagy. Increasingly, research on autophagy has begun to focus on its role in inflammation and the immune response. Autophagy acts as an immune effector that mediates pathogen clearance. The roles of autophagy bridge both the innate and adaptive immune systems and include functions in thymic selection, antigen presentation, promotion of lymphocyte homeostasis and survival, and regulation of cytokine production. In this review, we discuss the mechanisms by which autophagy is regulated, as well as the functions of autophagy and autophagy proteins in immunity and inflammation.


Asunto(s)
Autofagia/inmunología , Sistema Inmunológico/inmunología , Inmunidad Adaptativa , Animales , Humanos , Inmunidad Innata , Infecciones/inmunología , Infecciones/microbiología , Infecciones/virología
8.
ACS Chem Biol ; 6(1): 86-94, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21087032

RESUMEN

Small molecules are important not only as therapeutics to treat disease but also as chemical tools to probe complex biological processes. The discovery of novel bioactive small molecules has largely been catalyzed by screening diverse chemical libraries for alterations in specific activities in pure proteins assays or in generating cell-based phenotypes. New approaches are needed to close the vast gap between the ability to study either single proteins or whole cellular processes. This Review focuses on the growing number of studies aimed at understanding in more detail how small molecules perturb particular signaling pathways and larger networks to yield distinct cellular phenotypes. This type of pathway-level analysis and phenotypic profiling provides valuable insight into mechanistic action of small molecules and can reveal off-target effects and improve our understanding of how proteins within a pathway regulate signaling.


Asunto(s)
Sondas Moleculares/química , Proteoma/química , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Sistemas de Liberación de Medicamentos , Proteoma/metabolismo , Interferencia de ARN , Bibliotecas de Moléculas Pequeñas/metabolismo
9.
Nat Chem Biol ; 6(6): 457-63, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436488

RESUMEN

We report the discovery of small molecules that target the Rho pathway, which is a central regulator of cytokinesis--the final step in cell division. We have developed a way of targeting a small molecule screen toward a specific pathway, which should be widely applicable to the investigation of any signaling pathway. In a chemical genetic variant of a classical modifier screen, we used RNA interference (RNAi) to sensitize cells and identified small molecules that suppressed or enhanced the RNAi phenotype. We discovered promising candidate molecules, which we named Rhodblock, and we identified the target of Rhodblock as Rho kinase. Several Rhodblocks inhibited one function of the Rho pathway in cells: the correct localization of phosphorylated myosin light chain during cytokinesis. Rhodblocks differentially perturb Rho pathway proteins in cells and can be used to dissect the mechanism of the Rho pathway during cytokinesis.


Asunto(s)
Citocinesis/fisiología , Quinasas Asociadas a rho/metabolismo , Animales , Citocinesis/efectos de los fármacos , Drosophila/enzimología , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Inhibidores Enzimáticos/farmacología , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Aumento de la Imagen , Cinética , Miosina Tipo II/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN/antagonistas & inhibidores , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/efectos de los fármacos
10.
ACS Chem Biol ; 5(1): 79-90, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20014865

RESUMEN

Cytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis. In this review, we discuss the use of small molecule probes to perturb cytokinesis, as well as the role naturally occurring small molecule metabolites such as lipids play during cytokinesis.


Asunto(s)
Citocinesis/fisiología , Transducción de Señal , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA