Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136099

RESUMEN

The presence of cardiac shunts in ectothermic tetrapods is thought to be consistent with active vascular modulations for proper hemodynamic support. Local control of blood flow modulates tissue perfusion and thus systemic conductance (Gsys) is assumed to increase with body temperature (Tb) to accommodate higher aerobic demand. However, the general increase of Gsys presses for a higher right-to-left (R-L) shunt, which reduces arterial oxygen concentration. In contrast, Tb reduction leads to a Gsys decrease and a left-to-right shunt, which purportedly increases pulmonary perfusion and plasma filtration in the respiratory area. This investigation addressed the role of compensatory vascular adjustments in the face of the metabolic alterations caused by Tb change in the South American rattlesnake (Crotalus durissus). Cardiovascular recordings were performed in decerebrated rattlesnake preparations at 10, 20 and 30°C. The rise in Tb increased metabolic demand, and correlated with an augmentation in heart rate. Although cardiac output increased, systemic stroke volume reduced while pulmonary stroke volume remained stable. Although that resulted in a proportionally higher increase in pulmonary blood flow, the R-L shunt was maintained. While the systemic compliance of large arteries was the most relevant factor in regulating arterial systemic blood pressure, peripheral conductance of pulmonary circulation was the major factor influencing the final cardiac shunt. Such dynamic adjustment of systemic compliance and pulmonary resistance for shunt modulation has not been demonstrated before and contrasts with previous knowledge on shunt control.


Asunto(s)
Crotalus , Hemodinámica , Animales , Crotalus/fisiología , Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Temperatura , Gasto Cardíaco/fisiología , Circulación Pulmonar/fisiología , Masculino , Serpientes Venenosas
2.
Artículo en Inglés | MEDLINE | ID: mdl-35944610

RESUMEN

A decerebrate rattlesnake, Crotalus durissus, has previously been used as a model Squamate for cardiovascular studies. It enabled instrumentation for concomitant recordings of diverse variables that showed autonomic responses. However, to validate the preparation and its scope for use, it is necessary to assess how close its cardiovascular variables are to non-decerebrate snakes and the effectiveness of its autonomic responses. Similarly, it is important to analyze its recovery profile after instrumentation and observe if it maintains stability throughout the duration of experimental protocol. Here we have objectively assessed these points by comparing decerebrate preparations and non-decerebrate snakes, after the occlusive cannulation of the vertebral artery. We have assessed cardiovascular variables and the baroreflex to analyze the presence, magnitude and stability of complex autonomic-controlled parameters as indicators of autonomic nervous system (ANS) functionality. After instrumentation, mean heart rates were high but recovered to stable values within 24 h. Mean arterial pressure stabilized within 24 h in control snakes and 48 h in decerebrate preparations. After that, both parameters remained stable. The operational gain and effectiveness index of the baroreflex recovered within the first 6 h after instrumentation in both experimental groups. In addition, the baroreflex capacities and its limits were also equivalent between the groups. These experiments demonstrated that decerebrate preparations and inactive, non-decerebrate snakes showed comparable recovery profiles following anesthesia and cannulation, maintained similar values of cardiovascular variables during experimental manipulation and exhibited functional, ANS modulated reflexes. Accordingly, the present results attest the relevance of this decerebrate preparation for studies on cardiovascular modulation.


Asunto(s)
Barorreflejo , Crotalus , Animales , Presión Sanguínea , Crotalus/fisiología , Corazón/fisiología , Frecuencia Cardíaca , Vigilia
3.
J Exp Zool A Ecol Integr Physiol ; 331(7): 374-381, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31180622

RESUMEN

The sequence method is an alternative to the traditional pharmacological approach (i.e., the Oxford technique) used to calculate baroreflex gain (G) in mammals. Although the sequence method assesses baroreflex by measuring spontaneous events of blood pressure regulation, the pharmacological method relies on the injection of vasoactive drugs that impact the baroreflex mechanism itself. The sequence method might be relevant for dynamic measurement of baroreflex modulation but it was never validated for vertebrates with low heart rate. Hence, we tested the sequence method in three species of reptiles and compared the results with those provided by the classic pharmacological method. G was similar between both methods and values correlated when parameters for the sequence method were set at delay 0 or 1 (i.e., the baroreflex system responds immediately to blood pressure changes or after 1 heartbeat). Calculation of the baroreflex effectiveness index was adequate at a minimum of 300 cycles and a delay of 1 for the three species. Therefore, the sequence method has been validated to investigate baroreflex regulation in reptiles, enabling studies during dynamic alterations in homeostasis.


Asunto(s)
Barorreflejo/fisiología , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Crotalus/fisiología , Iguanas/fisiología , Lagartos/fisiología , Nitroprusiato/farmacología , Fenilefrina/farmacología , Reproducibilidad de los Resultados , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA