Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
2.
JACC Basic Transl Sci ; 9(2): 223-240, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38510717

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a major clinical problem, with limited treatments. HFpEF is characterized by a distinct, but poorly understood, skeletal muscle pathology, which could offer an alternative therapeutic target. In a rat model, we identified impaired myonuclear accretion as a mechanism for low myofiber growth in HFpEF following resistance exercise. Acute caloric restriction rescued skeletal muscle pathology in HFpEF, whereas cardiac therapies had no effect. Mechanisms regulating myonuclear accretion were dysregulated in patients with HFpEF. Overall, these findings may have widespread implications in HFpEF, indicating combined dietary with exercise interventions as a beneficial approach to overcome skeletal muscle pathology.

3.
J Transl Med ; 21(1): 617, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697391

RESUMEN

BACKGROUND: Vibrational spectroscopy can be a valuable tool to monitor the markers of cardiovascular diseases. In the present work, we explored the vibrational spectroscopy characteristics of the cardiac tissue in an experimental model of heart failure with preserved ejection fraction (HFpEF). The goal was to detect early cardiac chemical modifications associated with the development of HFpEF. METHODS: We used the Fourier-transform infrared (FTIR) and Raman micro-spectroscopic techniques to provide complementary and objective tools for the histological assessment of heart tissues from an animal model of HFpEF. A new sampling technique was adopted (tissue print on a CaF2 disk) to characterize the extracellular matrix. RESULTS: Several spectroscopic markers (lipids, carbohydrates, and glutamate bands) were recognized in the cardiac ventricles due to the comorbidities associated with the pathology, such as obesity and diabetes. Besides, abnormal collagen cross-linking and a decrease in tryptophan content were observed and related to the stiffening of ventricles and to the inflammatory state which is a favourable condition for HFpEF. CONCLUSIONS: By the analyses of tissues and tissue prints, FTIR and Raman techniques were shown to be highly sensitive and selective in detecting changes in the chemistry of the heart in experimental HFpEF and its related comorbidities. Vibrational spectroscopy is a new approach that can identify novel biomarkers for early detection of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Animales , Volumen Sistólico , Miocardio , Corazón , Análisis Espectral
4.
Br J Pharmacol ; 180(24): 3254-3270, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37522273

RESUMEN

BACKGROUND AND PURPOSE: Guanylyl cyclase-A (GC-A), activated by endogenous atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), plays an important role in the regulation of cardiovascular and renal homeostasis and is an attractive drug target. Even though small molecule modulators allow oral administration and longer half-life, drug targeting of GC-A has so far been limited to peptides. Thus, in this study we aimed to develop small molecular activators of GC-A. EXPERIMENTAL APPROACH: Hits were identified through high-throughput screening and optimized by in silico design. Cyclic GMP was measured in QBIHEK293A cells expressing GC-A, GC-B or chimerae of the two receptors using AlphaScreen technology. Binding assays were performed in membrane preparations or whole cells using 125 I-ANP. Vasorelaxation was measured in aortic rings isolated from Wistar rats. KEY RESULTS: We have identified small molecular allosteric enhancers of GC-A, which enhanced ANP or BNP effects in cellular systems and ANP-induced vasorelaxation in rat aortic rings. The mechanism of action appears novel and not mediated through previously described allosteric binding sites. In addition, the selectivity and activity depend on a single amino acid residue that differs between the two similar receptors GC-A and GC-B. CONCLUSION AND IMPLICATIONS: We describe a novel allosteric binding site on GC-A, which can be targeted by small molecules to enhance ANP and BNP effects. These compounds will be valuable tools in further development and proof-of-concept of GC-A enhancement for the potential use in cardiovascular therapy.


Asunto(s)
Factor Natriurético Atrial , Guanilato Ciclasa , Ratas , Animales , Factor Natriurético Atrial/farmacología , Factor Natriurético Atrial/metabolismo , Guanilato Ciclasa/metabolismo , Ratas Wistar , Receptores del Factor Natriurético Atrial/metabolismo , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/farmacología , GMP Cíclico/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982271

RESUMEN

The kidneys are one of the main end organs targeted by hypertensive disease. Although the central role of the kidneys in the regulation of high blood pressure has been long recognized, the detailed mechanisms behind the pathophysiology of renal damage in hypertension remain a matter of investigation. Early renal biochemical alterations due to salt-induced hypertension in Dahl/salt-sensitive rats were monitored by Fourier-Transform Infrared (FTIR) micro-imaging. Furthermore, FTIR was used to investigate the effects of proANP31-67, a linear fragment of pro-atrial natriuretic peptide, on the renal tissue of hypertensive rats. Different hypertension-induced alterations were detected in the renal parenchyma and blood vessels by the combination of FTIR imaging and principal component analysis on specific spectral regions. Changes in amino acids and protein contents observed in renal blood vessels were independent of altered lipid, carbohydrate, and glycoprotein contents in the renal parenchyma. FTIR micro-imaging was found to be a reliable tool for monitoring the remarkable heterogeneity of kidney tissue and its hypertension-induced alterations. In addition, FTIR detected a significant reduction in these hypertension-induced alterations in the kidneys of proANP31-67-treated rats, further indicating the high sensitivity of this cutting-edge imaging modality and the beneficial effects of this novel medication on the kidneys.


Asunto(s)
Hipertensión , Ratas , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Presión Sanguínea , Ratas Endogámicas Dahl , Hipertensión/diagnóstico por imagen , Hipertensión/tratamiento farmacológico , Hipertensión/inducido químicamente , Riñón/metabolismo
6.
Eur J Heart Fail ; 24(12): 2212-2225, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36161443

RESUMEN

AIM: Chronic heart failure (CHF) can be classified as heart failure with preserved ejection fraction (HFpEF) or with reduced ejection fraction (HFrEF). Currently, there is an unmet need for a minimally invasive diagnostic tool for different forms of CHF. We aimed to investigate the diagnostic potential of circulating microRNAs (miRNAs) for the detection of different CHF forms via a systematic review and meta-analysis approach. METHODS AND RESULTS: Comprehensive search on Medline, Web of Science, Scopus, and EMBASE identified 45 relevant studies which were used for qualitative assessment. Out of these, 29 studies were used for qualitative and quantitative assessment and allowed to identify a miRNA panel able to detect HFrEF and HFpEF with areas under the curve (AUC) of 0.86 and 0.79, respectively. A panel of eight miRNAs (hsa-miR-18b-3p, hsa-miR-21-5p, hsa-miR-22-3p, hsa-miR-92b-3p, hsa-miR-129-5p, hsa-miR-320a-5p, hsa-miR-423-5p, and hsa-miR-675-5p) detected HFrEF cases with a sensitivity of 0.85, specificity of 0.88 and AUC of 0.91. A panel of seven miRNAs (hsa-miR-19b-3p, hsa-miR-30c-5p, hsa-miR-206, hsa-miR-221-3p, hsa-miR-328-5p, hsa-miR-375-3p, and hsa-miR-424-5p) identified HFpEF cases with a sensitivity of 0.82 and a specificity of 0.61. CONCLUSIONS: Although conventional biomarkers (N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide) presented a better performance in detecting CHF patients, the results presented here pointed towards specific miRNA panels with potential additive values to circulating natriuretic peptides in the diagnosis of different classes of CHF. Equally important, miRNAs alone showed a reasonable capacity for 'ruling out' patients with HFrEF or HFpEF. Additional studies with large populations are required to confirm the diagnostic potential of miRNAs for sub-classes of CHF.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/genética , Péptido Natriurético Encefálico , Volumen Sistólico , MicroARNs/genética , Biomarcadores
7.
Sci Rep ; 12(1): 3440, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236899

RESUMEN

The pathophysiology of heart failure with preserved ejection fraction (HFpEF) is a matter of investigation and its diagnosis remains challenging. Although the mechanisms that are responsible for the development of HFpEF are not fully understood, it is well known that nearly 80% of patients with HFpEF have concomitant hypertension. We investigated whether early biochemical alterations were detectable during HFpEF progression in salt-induced hypertensive rats, using Fourier-transformed infrared (FTIR) and Raman spectroscopic techniques as a new diagnostic approach. Greater protein content and, specifically, greater collagen deposition were observed in the left atrium and right ventricle of hypertensive rats, together with altered metabolism of myocytes. Additionally, Raman spectra indicated a conformational change, or different degree of phosphorylation/methylation, in tyrosine-rich proteins. A correlation was found between tyrosine content and cardiac fibrosis of both right and left ventricles. Microcalcifications were detected in the left and right atria of control animals, with a progressive augmentation from six to 22 weeks. A further increase occurred in the left ventricle and right atrium of 22-week salt-fed animals, and a positive correlation was shown between the mineral deposits and the cardiac size of the left ventricle. Overall, FTIR and Raman techniques proved to be sensitive to early biochemical changes in HFpEF and preceded clinical humoral and imaging markers.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Animales , Insuficiencia Cardíaca/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Ratas , Espectroscopía Infrarroja por Transformada de Fourier , Volumen Sistólico/fisiología , Tirosina
8.
Front Physiol ; 12: 691407, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305645

RESUMEN

The characterization of the cardiac hormone atrial natriuretic peptide (ANP9 9 - 1 26), synthesized and secreted predominantly by atrial myocytes under stimulation by mechanical stretch, has established the heart as an endocrine organ with potent natriuretic, diuretic, and vasodilating actions. Three additional distinct polypeptides resulting from proteolytic cleavage of proANP have been identified in the circulation in humans. The mid-sequence proANP fragment 31-67 (also known as proANP3 1 - 6 7) has unique potent and prolonged diuretic and natriuretic properties. In this review, we report the main effects of this circulating hormone in different tissues and organs, and its mechanisms of actions. We further highlight recent evidence on the cardiorenal protective actions of chronic supplementation of synthetic proANP3 1 - 6 7 in preclinical models of cardiorenal disease. Finally, we evaluate the use of proANP3 1 - 6 7 as a new therapeutic strategy to repair end-organ damage secondary to hypertension, diabetes mellitus, renal diseases, obesity, heart failure, and other morbidities that can lead to impaired cardiac function and structure.

9.
Egypt Heart J ; 73(1): 55, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34173898

RESUMEN

BACKGROUND: Left atrial (LA) size is frequently assessed by posterior-anterior linear measurement of LA (LAD P-A) in the parasternal long axis to expedite examination. Aging, changes in body surface area, and several cardiovascular pathologies can affect aortic root (AoR) size, thereby affecting LA anatomical shape. We hypothesized that AoR dilatation influences LAD P-A and consequently correct assessment of LA size. RESULTS: We tested our hypothesis in a study of 70 patients with AoR diameter ranging from 2.7 to 4.8 cm. LA size assessed in parasternal long axis view as LAD P-A was compared to that with LA width and length acquired in the apical two and four chamber view. Simpson's method of discs was used as standard measurement to assess LA volume. We observed that LAD P-A in the parasternal long axis decreases when AoR diameter increases. Thus, the increase in LA size assessed in parasternal long axis did not correlate with the increase of LA volume. Further analysis revealed that a significant positive correlation was observed when LAV was plotted as a function of LAD P-A only for those with a normal size AoR. In contrast, LA volume increase correlated with LA diameters assessed in the apical two and four chamber view regardless of AoR size. CONCLUSIONS: Our study documents that increases in AoR impact on the linear measurement of LA, resulting in an underestimated LAD P-A. LA size ought to be calculated from the apical two and four chambers view parameters, especially in patients with AoR dilatation.

10.
J Am Coll Cardiol ; 77(4): 405-419, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33509397

RESUMEN

BACKGROUND: Whereas heart failure with reduced ejection fraction (HFrEF) is associated with ventricular dilation and markedly reduced systolic function, heart failure with preserved ejection fraction (HFpEF) patients exhibit concentric hypertrophy and diastolic dysfunction. Impaired cardiomyocyte Ca2+ homeostasis in HFrEF has been linked to disruption of membrane invaginations called t-tubules, but it is unknown if such changes occur in HFpEF. OBJECTIVES: This study examined whether distinct cardiomyocyte phenotypes underlie the heart failure entities of HFrEF and HFpEF. METHODS: T-tubule structure was investigated in left ventricular biopsies obtained from HFrEF and HFpEF patients, whereas cardiomyocyte Ca2+ homeostasis was studied in rat models of these conditions. RESULTS: HFpEF patients exhibited increased t-tubule density in comparison with control subjects. Super-resolution imaging revealed that higher t-tubule density resulted from both tubule dilation and proliferation. In contrast, t-tubule density was reduced in patients with HFrEF. Augmented collagen deposition within t-tubules was observed in HFrEF but not HFpEF hearts. A causative link between mechanical stress and t-tubule disruption was supported by markedly elevated ventricular wall stress in HFrEF patients. In HFrEF rats, t-tubule loss was linked to impaired systolic Ca2+ homeostasis, although diastolic Ca2+ removal was also reduced. In contrast, Ca2+ transient magnitude and release kinetics were largely maintained in HFpEF rats. However, diastolic Ca2+ impairments, including reduced sarco/endoplasmic reticulum Ca2+-ATPase activity, were specifically observed in diabetic HFpEF but not in ischemic or hypertensive models. CONCLUSIONS: Although t-tubule disruption and impaired cardiomyocyte Ca2+ release are hallmarks of HFrEF, such changes are not prominent in HFpEF. Impaired diastolic Ca2+ homeostasis occurs in both conditions, but in HFpEF, this mechanism for diastolic dysfunction is etiology-dependent.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca Diastólica/etiología , Miocitos Cardíacos/metabolismo , Anciano , Anciano de 80 o más Años , Ecocardiografía , Femenino , Insuficiencia Cardíaca Diastólica/diagnóstico por imagen , Insuficiencia Cardíaca Diastólica/metabolismo , Insuficiencia Cardíaca Diastólica/patología , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA