Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 89(17): 174802, 2002 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-12398675

RESUMEN

The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using >10(19) cm(-3) plasmas and a 10 TW, >45 fs, Ti:Al2O3 laser. The laser pulse shape was controlled through nonlinear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability, and that frequency chirp is of minimal importance for the experimental parameters.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 2): 056505, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12059723

RESUMEN

Spontaneous radiation emitted from relativistic electrons undergoing betatron motion in a plasma-focusing channel is analyzed, and applications to plasma wake-field accelerator experiments and to the ion-channel laser (ICL) are discussed. Important similarities and differences between a free electron laser (FEL) and an ICL are delineated. It is shown that the frequency of spontaneous radiation is a strong function of the betatron strength parameter a(beta), which plays a role similar to that of the wiggler strength parameter in a conventional FEL. For a(beta) > or approximately 1, radiation is emitted in numerous harmonics. Furthermore, a(beta) is proportional to the amplitude of the betatron orbit, which varies for every electron in the beam. The radiation spectrum emitted from an electron beam is calculated by averaging the single-electron spectrum over the electron distribution. This leads to a frequency broadening of the radiation spectrum, which places serious limits on the possibility of realizing an ICL.

3.
Phys Rev Lett ; 88(15): 154801, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11955201

RESUMEN

The transverse dynamics of a 28.5-GeV electron beam propagating in a 1.4 m long, (0-2)x10(14) cm(-3) plasma are studied experimentally in the underdense or blowout regime. The transverse component of the wake field excited by the short electron bunch focuses the bunch, which experiences multiple betatron oscillations as the plasma density is increased. The spot-size variations are observed using optical transition radiation and Cherenkov radiation. In this regime, the behavior of the spot size as a function of the plasma density is well described by a simple beam-envelope model. Dynamic changes of the beam envelope are observed by time resolving the Cherenkov light.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(4 Pt 2): 046502, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11690160

RESUMEN

Emissions produced or initiated by a 30-GeV electron beam propagating through a approximately 1-m long heat pipe oven containing neutral and partially ionized vapor have been measured near atomic spectral lines in a beam-plasma wakefield experiment. The Cerenkov spatial profile has been studied as a function of oven temperature and pressure, observation wavelength, and ionizing laser intensity and delay. The Cerenkov peak angle is affected by the creation of plasma, and estimates of neutral and plasma density have been extracted. Increases in visible background radiation, consistent with increased plasma recombination emissions due to dissipation of wakefields, were simultaneously measured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...