Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38893928

RESUMEN

The COVID-19 pandemic has underscored the critical need for effective air filtration systems in healthcare environments to mitigate the spread of viral and bacterial pathogens. This study explores the utilization of copper nanoparticle-coated materials for air filtration, offering both antiviral and antimicrobial properties. Highly uniform spherical copper oxide nanoparticles (~10 nm) were synthesized via a spinning disc reactor and subsequently functionalized with carboxylated ligands to ensure colloidal stability in aqueous solutions. The functionalized copper oxide nanoparticles were applied as antipathogenic coatings on extruded polyethylene and melt-blown polypropylene fibers to assess their efficacy in air filtration applications. Notably, Type IIR medical facemasks incorporating the copper nanoparticle-coated polyethylene fibers demonstrated a >90% reduction in influenza virus and SARS-CoV-2 within 2 h of exposure. Similarly, heating, ventilation, and air conditioning (HVAC) filtration pre- (polyester) and post (polypropylene)-filtration media were functionalised with the copper nanoparticles and exhibited a 99% reduction in various viral and bacterial strains, including SARS-CoV-2, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica, and Escherichia coli. In both cases, this mitigates not only the immediate threat from these pathogens but also the risk of biofouling and secondary risk factors. The assessment of leaching properties confirmed that the copper nanoparticle coatings remained intact on the polymeric fiber surfaces without releasing nanoparticles into the solution or airflow. These findings highlight the potential of nanoparticle-coated materials in developing biocompatible and environmentally friendly air filtration systems for healthcare settings, crucial in combating current and future pandemic threats.

2.
J Colloid Interface Sci ; 631(Pt A): 165-180, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36375299

RESUMEN

Silver nanoparticles (AgNPs) have found widespread commercial applications due to their unique physical and chemical properties. However, their relatively poor stability remains a main problem. An ideal way to improve the stability of AgNPs is not only to endow colloidal stability to individual nanoparticles but also to protect them from environmental factors that induce their agglomeration, like variation of ionic strength and pH, presence of macromolecules, etc. Mesoporous calcium carbonate vaterite crystals (CaCO3 vaterite) have recently attracted significant attention as inexpensive and biocompatible carriers for the encapsulation and controlled release of both drugs and nanoparticles. This work aimed to develop an approach to load AgNPs into CaCO3 vaterite without affecting their properties. We focused on improving the colloidal stability of AgNPs by using different capping agents, and understanding the mechanism behind AgNPs loading and release from CaCO3 crystals. Various methods were applied to study the AgNPs and CaCO3 crystals loaded with AgNPs (CaCO3/AgNPs hybrids), such as scanning and transmission electron microscopy, X-ray diffraction, infrared and mass spectrometry. The results demonstrated that polyvinylpyrrolidone and positively charged diethylaminoethyl-dextran can effectively keep the colloidal stability of AgNPs during co-precipitation with CaCO3 crystals. CaCO3/AgNPs hybrids composed of up to 4 % weight content of nanoparticles were produced, with the loading mechanism being well-described by the Langmuir adsorption model. In vitro release studies demonstrated a burst release of stable AgNPs at pH 5.0 and a sustained release at pH 7.5 and 9.0. The antibacterial studies showed that these hybrids are effective against Escherichia coli, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, three important bacteria responsible for nosocomial infections. The developed approach opens a new way to stabilise, protect, store and release AgNPs in a controlled manner for their use as antimicrobial agents.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Plata/química , Nanopartículas del Metal/química , Carbonato de Calcio/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Pruebas de Sensibilidad Microbiana
3.
Acta Trop ; 237: 106729, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280206

RESUMEN

We examined the anti-acanthamoebic efficacy of green tea Camellia sinensis solvent extract (SE) or its chemical constituents against Acanthamoeba castellanii by using anti-trophozoite, anti-encystation, and anti-excystation assays. C. sinensis SE (625-5000 µg/mL) inhibited trophozoite replication within 24-72 h. C. sinensis SE exhibited a dose-dependent inhibition of encystation, with a marked cysticidal activity at 2500-5000 µg/mL. Two constituents of C. sinensis, namely epigallocatechin-3-gallate and caffeine, at 100 µM and 200 µM respectively, significantly inhibited both trophozoite replication and encystation. Cytotoxicity analysis showed that 156.25-2500 µg/mL of SE was not toxic to human corneal epithelial cells, while up to 625 µg/mL was not toxic to Madin-Darby canine kidney cells. This study shows the anti-acanthamoebic potential of C. sinensis SE against A. castellanii trophozoites and cysts. Pre-clinical studies are required to elucidate the in vivo efficacy and safety of C. sinensis SE.


Asunto(s)
Acanthamoeba castellanii , Camellia sinensis , Animales , Perros , Humanos , Cafeína/farmacología , Solventes/farmacología , Trofozoítos
4.
Pharmaceutics ; 14(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36297465

RESUMEN

In this study, poly (lactic-co-glycolic) acid (PLGA) particles were synthesized and coated with chitosan. Three essential oil (EO) components (eugenol, linalool, and geraniol) were entrapped inside these PLGA particles by using the continuous flow-focusing microfluidic method and a partially water-miscible solvent mixture (dichloromethane: acetone mixture (1:10)). Encapsulation of EO components in PLGA particles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction, with encapsulation efficiencies 95.14%, 79.68%, and 71.34% and loading capacities 8.88%, 8.38%, and 5.65% in particles entrapped with eugenol, linalool, and geraniol, respectively. The EO components' dissociation from the loaded particles exhibited an initial burst release in the first 8 h followed by a sustained release phase at significantly slower rates from the coated particles, extending beyond 5 days. The EO components encapsulated in chitosan coated particles up to 5 µg/mL were not cytotoxic to bovine gut cell line (FFKD-1-R) and had no adverse effect on cell growth and membrane integrity compared with free EO components or uncoated particles. Chitosan coated PLGA particles loaded with combined EO components (10 µg/mL) significantly inhibited the motility of the larval stage of Haemonchus contortus and Trichostrongylus axei by 76.9%, and completely inhibited the motility of adult worms (p < 0.05). This nematocidal effect was accompanied by considerable cuticular damage in the treated worms, reflecting a synergistic effect of the combined EO components and an additive effect of chitosan. These results show that encapsulation of EO components, with a potent anthelmintic activity, in chitosan coated PLGA particles improve the bioavailability and efficacy of EO components against ovine gastrointestinal nematodes.

5.
Nanoscale Adv ; 4(10): 2242-2249, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133698

RESUMEN

Nanometer scale rods of superparamagnetic iron oxide have been encapsulated, along with the anti-cancer therapeutic carnosine, inside porous poly(lactic-co-glycolic acid) microbeads with a uniform morphology, synthesised using microfluidic arrays. The sustained and externally triggered controlled release from these vehicles was demonstrated using a rotating Halbach magnet array, quantified via liquid chromatography, and imaged in situ using magnetic resonance imaging (MRI) and scanning electron microscopy (SEM). In the absence of the external magnetic trigger, the carnosine was found to be released from the polymer in a linear profile; however, over 50% of the drug could be released within 30 minutes of exposure to the rotating magnetic field. In addition, the release of carnosine embedded on the surface of the nano-rods was delayed if it was mixed with the iron oxide nano rods before the encapsulation. These new drug delivery vesicles have the potential to pave the way towards the safe and triggered release of onsite drug delivery, as part of a theragnostic treatment for glioblastoma.

6.
Nanomaterials (Basel) ; 11(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34578472

RESUMEN

The complete removal of glioblastoma brain tumours is impossible to achieve by surgery alone due to the complex finger-like tentacle structure of the tumour cells and their migration away from the bulk of the tumour at the time of surgery; furthermore, despite aggressive chemotherapy and radiotherapy treatments following surgery, tumour cells continue to grow, leading to the death of patients within 15 months after diagnosis. The naturally occurring carnosine dipeptide has previously demonstrated activity against in vitro cultured glioblastoma cells; however, at natural physiological concentrations, its activity is too low to have a significant effect. Towards realising the full oncological potential of carnosine, the dipeptide was embedded within an externally triggered carrier, comprising a novel nano rod-shaped superparamagnetic iron oxide nanoparticle (ca. 86 × 19 × 11 nm) capped with a branched polyethyleneimine, which released the therapeutic agent in the presence of an external magnetic field. The new nano-carrier was characterized using electron microscopy, dynamic light scattering, elemental analysis, and magnetic resonance imaging techniques. In addition to cytotoxicity studies, the carnosine carrier's effectiveness as a treatment for glioblastoma was screened in vitro using the U87 human glioblastoma astrocytoma cell line. The labile carnosine (100 mM) suppresses both the U87 cells' proliferation and mobility over 48 h, resulting in significant reduction in migration and potential metastasis. Carnosine was found to be fully released from the carrier using only mild hyperthermia conditions (40 °C), facilitating an achievable clinical application of the slow, sustained-release treatment of glioblastoma brain tumours that demonstrates potential to inhibit post-surgery metastasis with the added benefit of non-invasive monitoring via MRI.

7.
Front Plant Sci ; 12: 668819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497618

RESUMEN

It is necessary to develop a resilient food supply that will withstand unexpected future shocks and deliver the required amounts of nutrients to consumers. By increasing the sustainability of food and agriculture, the food system will be able to handle challenges such as climate change, declining agricultural resources, growing population/urbanization, pandemics, and recessions/shortages. Micronutrient deficiency, otherwise called hidden hunger, is one of the major malnutrition consequences worldwide, particularly in middle- or low- income countries. Unlike essential mineral or nutrient compounds, micronutrients could be less of a priority due to their small levels of requirement. However, insufficient micronutrients caused critical adverse health symptoms and are excessively vital for young children's development. Therefore, there have been numerous attempts to enhance minerals and nutrients in food crops, including biofortification, food fortification, and supplementation. Based on several interventions involving micronutrients, modern technology, such as nanotechnology, can be applied to enhance sustainability and to reduce the food system's environmental impact. Previous studies have addressed various strategies or interventions to mitigate major micronutrient deficiency including iron, iodine, zinc, and vitamin A. Comparably small amounts of studies have addressed vitamin B12 deficiency and its fortification in food crops. Vitamin B12 deficiency causes serious adverse health effects, including in the nervous or blood systems, and occurs along with other micronutrient deficiencies, such as folate, iron, and zinc, worldwide, particularly in middle- and low-income countries. Mitigation for B12 deficiency has mainly focused on developing pharmacological and medical treatments such as vitamin B12 serum or supplements. Further studies are required to undertake a sustainable approach to fortify vitamin B12 in plant-based food sources for public health worldwide. This review paper highlights nanoparticle application as a promising technology for enhancing vitamin B12 without conventional genetic modification requirements. The nanoparticle can efficiently deliver the mineral/nutrient using coating techniques to targeted sites into the plant. This is mainly because nanoparticles have better solubility and permeability due to their nano size with high surface exposure. Vitamin B12-coated nanoparticles would be absorbed, translocated, and accumulated by the plant and eventually enhance the bioavailability in food crops. Furthermore, by reducing adverse environmental effects, such as leaching issues that mainly occur with conventional fertilizer usage, it would be possible to develop more sustainable food fortification.

8.
Nanomaterials (Basel) ; 11(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206140

RESUMEN

Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (H2O2). In this work, the mechanism of nanoceria uptake in HLECs is studied and multiple anti-cataractogenic properties are assessed in vitro. Our results show that the nanoceria provide multiple beneficial actions to delay cataract progression by (1) acting as a catalase mimetic in cells with inhibited catalase, (2) improving reduced to oxidised glutathione ratio (GSH/GSSG) in HLECs, and (3) inhibiting the non-enzymatic glucose-induced glycation of the chaperone lens protein α-crystallin. Given the multifactorial nature of cataract progression, the varied actions of nanoceria render them promising candidates for potential non-surgical therapeutic treatment.

9.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072234

RESUMEN

A silica-bound C-butylpyrogallol[4]arene chromatographic stationary phase was prepared and characterised by thermogravimetric analysis, scanning electron microscopy, NMR and mass spectrometry. The chromatographic performance was investigated by using C60 and C70 fullerenes in reverse phase mode via flash column and high-pressure liquid chromatography (HPLC). The resulting new stationary phase was observed to demonstrate size-selective molecular recognition as postulated from our in-silico studies. The silica-bound C-butylpyrogallol[4]arene flash and HPLC stationary phases were able to separate a C60- and C70-fullerene mixture more effectively than an RP-C18 stationary phase. The presence of toluene in the mobile phase plays a significant role in achieving symmetrical peaks in flash column chromatography.


Asunto(s)
Cromatografía en Gel/métodos , Cromatografía Líquida de Alta Presión/métodos , Fulerenos/química , Fulerenos/aislamiento & purificación , Técnicas de Química Sintética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Teoría Cuántica , Dióxido de Silicio/química , Termogravimetría
10.
Pathogens ; 9(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916863

RESUMEN

The anthelmintic effects of extracted coriander oil and five pure essential oil constituents (geraniol, geranyl acetate, eugenol, methyl iso-eugenol, and linalool) were tested, using larval motility assay, on the third-stage larvae (L3s) of Haemonchus contortus, Trichostrongylus axei, Teladorsagia circumcincta, Trichostrongylus colubriformis, Trichostrongylus vitrinus and Cooperia oncophora. Coriander oil and linalool, a major component of tested coriander oil, showed a strong inhibitory efficacy against all species, except C. oncophora with a half maximal inhibitory concentration (IC50) that ranged from 0.56 to 1.41% for the coriander oil and 0.51 to 1.76% for linalool. The coriander oil and linalool combinations conferred a synergistic anthelmintic effect (combination index [CI] <1) on larval motility comparable to positive control (20 mg/mL levamisole) within 24 h (p < 0.05), reduced IC50 values to 0.11-0.49% and induced a considerable structural damage to L3s. Results of the combined treatment were validated by quantitative fluorometric microplate-based assays using Sytox green, propidium iodide and C12-resazurin, which successfully discriminated live/dead larvae. Only Sytox green staining achieved IC50 values comparable to that of the larval motility assay. The cytotoxicity of the combined coriander oil and linalool on Madin-Darby Canine Kidney cells was evaluated using sulforhodamine-B (SRB) assay and showed no significant cytotoxic effect at concentrations < 1%. These results indicate that testing essential oils and their main components may help to find new potential anthelmintic compounds, while at the same time reducing the reliance on synthetic anthelmintics.

11.
Animals (Basel) ; 10(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32846875

RESUMEN

Recently, nanotechnology has been widely adopted in many fields. The goal of this study was to evaluate the potential for amino acid coated nano minerals as a supplement in broiler feed. Zinc was selected as a model mineral for this test and supplementation of nano zinc, both coated and uncoated was compared with organic and inorganic commercial forms of zinc. A total of 48 pens (8 birds each) were assigned to one of the following dietary treatments: Control, methionine-Zinc chelate (M-Zn), nano zinc oxide (Nano-ZnO), and methionine coated nano zinc oxide (M-Nano-ZnO). All experimental diets were formulated with the same total zinc, methionine, protein, and energy content with just the zinc source as a variable. Bird weight, feed intake and feed conversion ratios were recorded weekly, with three birds culled (sacrificed) at day 21 and day 35 for sampling measures. Ileal digestibility of zinc was determined at day 21 and day 35 using titanium dioxide as an inert marker. Blood serum, liver and spleen samples were collected at day 21 and day 35 and analysed for zinc content via inductively coupled plasma mass spectrometry (ICP-MS). Tibia strength and morphometrics were measured from both legs of three birds per pen at day 21 and day 35. The study was conducted at Nottingham Trent University Poultry Unit, UK. The novel method of producing nano minerals coated with amino acids was successfully tested with zinc and material produced to test in the feeding study. Methionine coated nano zinc oxide supplementation significantly improved bird weight gain and the increased feed intake of broilers compared to an inorganic zinc form. Ileal digestibility was also improved with this methionine-nano zinc. Moreover, this supplementation improved the tibia strength of broilers at the age of 21 days, though this was not observed at day 35. Therefore, M-Nano-ZnO could be used to supplement broilers to improve both performance and digestibility with a limited positive impact on bone strength. The results of the current study suggest that the amino acid coating of nano minerals can improve the digestibility of minerals which may have further implications for the field of mineral nutrition in animal feeds.

12.
Molecules ; 25(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973133

RESUMEN

Nanoceria (cerium oxide nanoparticles) have been shown to protect human lens epithelial cells (HLECs) from oxidative stress when used at low concentrations. However, there is a lack of understanding about the mechanism of the cytotoxic and genotoxic effects of nanoceria when used at higher concentrations. Here, we investigated the impact of 24-hour exposure to nanoceria in HLECs. Nanoceria's effects on basal reactive oxygen species (ROS), mitochondrial morphology, membrane potential, ATP, genotoxicity, caspase activation and apoptotic hallmarks were investigated. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) studies on isolated mitochondria revealed significant uptake and localization of nanoceria in the mitochondria. At high nanoceria concentrations (400 µg mL-1), intracellular levels of ROS were increased and the HLECs exhibited classical hallmarks of apoptosis. These findings concur with the cells maintaining normal ATP levels necessary to execute the apoptotic process. These results highlight the need for nanoceria dose-effect studies on a range of cells and tissues to identify therapeutic concentrations in vitro or in vivo.


Asunto(s)
Apoptosis/efectos de los fármacos , Cerio/toxicidad , Epitelio/patología , Cristalino/efectos de los fármacos , Cristalino/patología , Nanopartículas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/biosíntesis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Daño del ADN , Células Epiteliales/efectos de los fármacos , Epitelio/efectos de los fármacos , Glicol de Etileno/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Mutágenos/toxicidad , Nanopartículas/ultraestructura
13.
Chem Commun (Camb) ; 56(12): 1792-1794, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31942912

RESUMEN

A novel co-pillar[4+1]arene incorporating two bromo-octyl substituents has been synthesised for the first time, using microwave irradiation in high yield (88%) in under four minutes, and bound to the surface of chromatographic silica particles. The resulting new stationary phase has been successfully utilised to separate xylene isomers via liquid chromatographic techniques.

14.
Magn Reson Med ; 83(3): 1096-1108, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31524306

RESUMEN

PURPOSE: This work demonstrates specifically tailored microbubble-based preparations and their suitability as MRI contrast agents for ingestion and measuring temporal and spatial pressure variation in the human stomach. METHODS: Enhanced alginate spheres were prepared by incorporating gas-filled microbubbles into sodium alginate solution followed by the polymerization of the mixture in an aqueous calcium lactate solution. The microbubbles were prepared with a phospholipid shell and perfluorocarbon gas filling, using a mechanical cavitational agitation regime. The NMR signal changes to externally applied pressure and coming from the enhanced alginate spheres were acquired and compared with that of alginate spheres without microbubbles. In vivo investigations were also carried out on healthy volunteers to measure the pressure variation in the stomach. RESULTS: The MR signal changes in the contrast agent exhibits a linear sensitivity of approximately 40% per bar, as opposed to no measurable signal change seen in the control gas-free spheres. This novel contrast agent also demonstrates an excellent stability in simulated gastric conditions, including at body temperature. In vivo studies showed that the signal change exhibited in the meal within the antrum region is between 5% and 10%, but appears to come from both pressure changes and partial volume artifacts. CONCLUSION: This study demonstrates that alginate spheres with microbubbles can be used as an MRI contrast agent to measure pressure changes. The peristaltic movement within the stomach is seen to substantially alter the overall signal intensity of the contrast agent meal. Future work must focus on improving the contrast agent's sensitivity to pressure changes.


Asunto(s)
Alginatos/química , Medios de Contraste/química , Imagen por Resonancia Magnética , Microburbujas , Estómago/diagnóstico por imagen , Estómago/patología , Adulto , Temperatura Corporal , Femenino , Fluorocarburos , Gases , Ácido Gástrico/química , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Fosfolípidos , Presión
15.
RSC Adv ; 9(29): 16596-16605, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35516401

RESUMEN

Chronic diseases are rising in incidence and prevalence because of increases in life expectancy in many parts of the world coupled with advances in medicine which manage disease progression, rather than curing and alleviating the causes. Cataract is one such chronic condition. Identifying a therapeutic intervention that is successful in reversing or preventing cataracts may have applications for other chronic diseases of protein misfolding, such as diabetes and Alzheimer's disease as these have similar causation factors, notably oxidative stress and/or glycation. Cerium oxide nanoparticles (nanoceria) which have antioxidant, radioprotective and enzyme-mimetic properties have the potential to lead to an effective non-surgical treatment. However, nanoceria stability in physiological media is poor thus hindering their effective use in biomedical applications. Here we report a highly efficient one-pot synthesis of nanoceria (2-5 nm) coated with ethylene glycol, that is colloidally stable in physiological media and exhibits multiwavelength photoluminescence. The formulation, up to concentrations of 200 µg ml-1, was not toxic to human lens epithelial cells and had no adverse effect on the cellular morphology or proliferation rate. More significantly, these nanoceria showed protective effects against oxidative stress induced by hydrogen peroxide in lens epithelial cells. Electron microscopy studies show the internalization and cytoplasmic localization of the nanoceria was found to be largely in the perinuclear region.

16.
Magn Reson Med ; 70(5): 1409-18, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23233424

RESUMEN

PURPOSE: The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. METHODS: Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 µm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. RESULTS: The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. CONCLUSION: This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry.


Asunto(s)
Fluorocarburos/química , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Manometría/métodos , Microburbujas , Medios de Contraste/química , Medios de Contraste/efectos de la radiación , Fluorocarburos/efectos de la radiación , Presión , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Chemistry ; 16(42): 12570-81, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-20967906

RESUMEN

The dynamic solution equilibria between molecular Borromean rings (BRs) and Solomon knots (SKs), assembled from transition metal-templated macrocycles, consisting of exo-bidentate bipyridyl and endo-tridentate diiminopyridyl ligands, have been examined with respect to the choice of the metal template and reaction conditions employed in the synthesis of the metalated BRs, otherwise known as Borromeates. Three new Borromeates, their syntheses templated by Cu(II), Co(II), and Mn(II), have been characterized extensively (two by X-ray crystallography) to the extent that the metal centers in the assemblies have been shown to be distanced sufficiently from each other not to communicate. The solid-state structure of the Co(II)-Borromeate reveals that six MeOH molecules, arranged in a [O--H...O] hydrogen bonded, chair-like conformation, are located within its oxophilic central cavity. When a mixture of Cu(II) and Zn(II) is used as the source of templation, there exists a dynamic equilibrium, in MeOH at room temperature, between a mixed-metal BR and a SK, from which the latter has been fractionally crystallized. By employing appropriate synthetic protocols with Zn(II) or Cd(II) as the template, significant amounts of SKs are formed alongside BRs. Modified crystallization conditions resulted in the isolation of both an all-zinc BR and an all-zinc SK, crystals of which can be separated manually, leading to the full characterization of the all-zinc SK by (1)H NMR spectroscopy and X-ray crystallography. This doubly interlocked [2]catenate has been identified retrospectively in recorded spectra, where it was attributed previously to a Borromeate with a Zn(II) cation coordinated to the oxophilic interior walls of the ensemble. Interestingly, these Zn(II)-templated assemblies do not interconvert in MeOH at room temperature, indicating the significant influence of both the metal template and solvent on the solution equilibria. It would also appear that d(10) metal ions favor SK formation-no evidence of Cu(II)-, Co(II)-, or Mn(II)-templated SKs has been found, yet a 1:0.9 ratio of BR:SK has been identified by (1)H NMR spectroscopy when Cd(II) is used as the template.

18.
Chem Commun (Camb) ; 46(14): 2420-2, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20379545

RESUMEN

Superparamagnetic iron oxide nanometre scale particles have been utilised as contrast agents to image staked target binding oligonucleotide arrays using MRI to correlate the signal intensity and T(2)* relaxation times in different NMR fluids.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , ADN/química , Compuestos Férricos/química , Magnetismo , Nanopartículas del Metal/química
19.
J Immunol Methods ; 344(2): 121-32, 2009 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-19345222

RESUMEN

Dendritic cell derived exosomes are able to mediate and modulate immune responses in vivo by semi-direct T cell activation. T cells can eradicate primary, metastatic, relapsed tumours and ameliorate otherwise fatal viral infections. Not surprisingly activation and expansion of T cells has become one of the main focuses for immunotherapy. Using nanotechnology, we have developed targeted and traceable in vivo artificial exosomes by coating liposomes (FDA approved) with an optimized number of MHC Class I/peptide complexes and a selected specific range of ligands for adhesion, early activation, late activation and survival T cell receptors. These targeted artificial exosomes are traceable both in vitro and in vivo via fluorescent and Magnetic Resonance Imaging and facilitate imaging of specific areas by applying localised nuclear magnetic interactions of hydrogens via super paramagnetic labels. Here we show that artificial exosomes activate and expand functional antigen specific T cells at sufficient levels. This novel system has potential basic and clinical applications in immunology where the study of membrane interactions is desired.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Exosomas/metabolismo , Activación de Linfocitos , Animales , Membrana Celular/inmunología , Membrana Celular/metabolismo , Células Cultivadas , Exosomas/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Liposomas/síntesis química , Liposomas/metabolismo , Imagen por Resonancia Magnética , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos BALB C , Nanopartículas , Nanotecnología/métodos
20.
Dalton Trans ; (29): 3170-82, 2007 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-17637992

RESUMEN

A series of cyclometallated phenylpyridine platinum(II) complexes have been synthesised with a systematic variation in both the phenylpyridine and the ancillary ligand. Oxidation of one of the cyclometallated species leads to a number of isomeric platinum(IV) complexes, all of which eventually isomerize to a single compound. The route to these new compounds has been demonstrated to involve an initial slow oxidation followed by a rapid C-H activation to give doubly cyclometallated complexes. The solid state structures of a number of both the platinum(II) and the platinum(IV) species have been solved; many of the structures exhibited extended interactions that result in complex three dimensional packing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...