Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(33): 10388-10395, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39116280

RESUMEN

Biomaterials in nature form hierarchical structures and functions across various length scales through binding and assembly processes. Inspired by nature, we developed hierarchically organized tissue engineering materials through evolutionary screening and self-templating assembly. Leveraging the M13 bacteriophage (phage), we employed an evolutionary selection process against hydroxyapatite (HA) to isolate HA-binding phage (HAPh). The newly discovered phage exhibits a bimodal length, comprising 950 nm and 240 nm, where the synergistic effect of these dual lengths promotes the formation of supramolecular fibrils with periodic banded structures. The assembled HAPh fibrils show the capability of HA mineralization and the directional growth of osteoblast cells. When applied to a dentin surface, it induces the regeneration of dentin-like tissue structures, showcasing its potential applications as a scaffold in tissue engineering. The integration of evolutionary screening and self-templating assembly holds promise for the future development of hierarchically organized tissue engineering materials.


Asunto(s)
Bacteriófago M13 , Durapatita , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Bacteriófago M13/química , Bacteriófago M13/genética , Durapatita/química , Osteoblastos/citología , Humanos , Materiales Biocompatibles/química , Andamios del Tejido/química , Dentina/química
2.
Nano Lett ; 24(32): 9946-9952, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101944

RESUMEN

The utilization of biomaterials for the separation of rare earth elements (REEs) has attracted considerable interest due to their inherent advantages, including diverse molecular structures for selective binding and the use of eco-friendly materials for sustainable systems. We present a pioneering methodology for developing a safe virus to selectively bind REEs and facilitate their release through pH modulation. We engineered the major coat protein of M13 bacteriophage (phage) to incorporate a lanthanide-binding peptide. The engineered lanthanide-binding phage (LBPh), presenting ∼3300 copies of the peptide, serves as an effective biological template for REE separation. Our findings demonstrate the LBPh's preferential binding for heavy REEs over light REEs. Moreover, the LBPh exhibits remarkable robustness with excellent recyclability and stability across multiple cycles of separations. This study underscores the potential of genetically integrating virus templates with selective binding motifs for REE separation, offering a promising avenue for environmentally friendly and energy-efficient separation processes.


Asunto(s)
Bacteriófago M13 , Metales de Tierras Raras , Metales de Tierras Raras/química , Metales de Tierras Raras/aislamiento & purificación , Bacteriófago M13/química , Bacteriófago M13/genética , Elementos de la Serie de los Lantanoides/química , Proteínas de la Cápside/química , Proteínas de la Cápside/aislamiento & purificación , Proteínas de la Cápside/genética , Péptidos/química , Concentración de Iones de Hidrógeno
3.
Adv Mater ; 35(46): e2305503, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611920

RESUMEN

The first observation of heat-induced electrical potential generation on a virus and its detection through pyroelectricity are presented. Specifically, the authors investigate the pyroelectric properties of the M13 phage, which possesses inherent dipole structures derived from the noncentrosymmetric arrangement of the major coat protein (pVIII) with an α-helical conformation. Unidirectional polarization of the phage is achieved through genetic engineering of the tail protein (pIII) and template-assisted self-assembly techniques. By modifying the pVIII proteins with varying numbers of glutamate residues, the structure-dependent tunable pyroelectric properties of the phage are explored. The most polarized phage exhibits a pyroelectric coefficient of 0.13 µC m-2 °C-1 . Computational modeling and circular dichroism (CD) spectroscopy analysis confirm that the unfolding of α-helices within the pVIII proteins leads to changes in phage polarization upon heating. Moreover, the phage is genetically modified to enable its pyroelectric function in diverse chemical environments. This phage-based approach not only provides valuable insights into bio-pyroelectricity but also opens up new opportunities for the detection of various viral particles. Furthermore, it holds great potential for the development of novel biomaterials for future applications in biosensors and bioelectric materials.


Asunto(s)
Bacteriófago M13 , Proteínas de la Cápside , Proteínas de la Cápside/química , Bacteriófago M13/química , Ingeniería Genética , Electricidad
4.
Biomacromolecules ; 24(1): 118-131, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36507771

RESUMEN

Protein-based material design provides great advantages to developing smart biomaterials with tunable structures and desired functions. They have been widely used in many biomedical applications including tissue engineering and drug delivery. However, protein-based materials are not yet widely used in optoelectronic materials despite their excellent optical and tunable mechanical properties. Here, we synthesized engineered fluorescent proteins (FPs) fused with elastic protein for the development of optoelectrical down-converting optical filters for flexible display materials. We synthesized sequence-specific FPs to tune blue, green, yellow, and red colors and fused them with elastic protein to tune mechanical properties. We fabricated flexible self-supporting film materials and characterized mechanical properties and down-converting optical properties. We also fabricated a hybrid light-emitting diode (LED) to down convert blue to desired green, red, and white colors. Furthermore, we constructed a flexible white LED using organic LED as a flexible substrate. Our modular synthesis approach of tunable bio-optoelectrical material approaches will be useful to design future biocompatible and flexible display materials and technologies.


Asunto(s)
Materiales Biocompatibles , Colorantes , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos
5.
J Colloid Interface Sci ; 628(Pt A): 820-828, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963169

RESUMEN

Undesired aggregation and adsorption of therapeutic proteins during manufacturing and administration processes can significantly decrease the efficacy of protein drugs, especially when a quantitative treatment is critical. In this study, we investigate molecular interactions of recombinant factor VIII (rFVIII), a therapeutic protein for hemophilia A treatment, at a static liquid-glass interface. We quantitatively analyze the adsorption and aggregation of rFVIII using atomic force microscopy (AFM), dynamic light scattering (DLS) and UV-Vis spectroscopy. We also investigate how PEGylation, temperature, ionic strength and pH affect the rFVIII aggregation and adsorption at the interface over time. The aggregation and adsorption of rFVIII are significantly reduced by decreasing electrostatic attractions in the solution. We observed that the PEGylation endows rFVIII molecules with high stability at the liquid-glass interface in a wide range of temperature, ionic strength and pH. Our studies will help to understand the molecular interactions of how proteins aggregate and adsorb on the solid surface and prevent the undesired events in pharmaceutical applications.


Asunto(s)
Factor VIII , Agregado de Proteínas , Adsorción , Factor VIII/química , Factor VIII/metabolismo , Preparaciones Farmacéuticas , Proteínas Recombinantes/química
6.
Biomacromolecules ; 22(5): 1901-1909, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33797889

RESUMEN

A dielectric medium containing noncentrosymmetric domains can exhibit piezoelectric and second-harmonic generation (SHG) responses when an electric field is applied. Since many crystalline biopolymers have noncentrosymmetric structures, there has been a great deal of interest in exploiting their piezoelectric and SHG responses for electromechanical and electro-optic devices, especially owing to their advantages such as biocompatibility and low density. However, exact mechanisms or origins of such polarization responses of crystalline biopolymers remain elusive due to the convolution of responses from multiple domains with varying degrees of structural disorder or difficulty of ensuring the unidirectional alignment of noncentrosymmetric domains. In this study, we investigate the polarization responses of a noncentrosymmetric crystalline biopolymer, namely, unidirectionally aligned ß-chitin crystals interspersed in the amorphous protein matrix, which can be obtained naturally from tubeworm Lamellibrachia satsuma (LS) tube. The mechanisms governing polarization responses in different dynamic regimes covering optical (>1013 Hz), acoustic/ultrasonic (103-105 Hz), and low (10-2-102 Hz) frequencies are explained. Relationships between the polarization responses dominant in different frequencies are addressed. Also, electromechanical coupling responses, including piezoelectricity of the LS tube, are quantitatively discussed. The findings of this study can be applicable to other noncentrosymmetric crystalline biopolymers, elucidating their polarization responses.


Asunto(s)
Quitina , Electricidad
7.
Carbohydr Polym ; 255: 117328, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436171

RESUMEN

In crystalline cellulose I, all glucan chains are ordered from reducing ends to non-reducing ends. Thus, the polarity of individual chains is added forming a large dipole within the crystal. If one can engineer unidirectional alignment (parallel packing) of cellulose crystals, then it might be possible to utilize the material properties originating from polar crystalline structures. However, most post-synthesis manipulation methods reported so far can only achieve the uniaxial alignment with bi-directionality (antiparallel packing). Here, we report a method to induce the parallel packing of bacterial cellulose microfibrils by applying unidirectional shear stress during the synthesis and deposition through the rising bubble stream in a culture medium. Driving force for the alignment is explained with mathematical estimation of the shear stress. Evidences of the parallel alignment of crystalline cellulose Iα domains were obtained using nonlinear optical spectroscopy techniques.


Asunto(s)
Acetobacteraceae/química , Celulosa/química , Microfibrillas/química , Acetobacteraceae/fisiología , Aire/análisis , Fenómenos Biomecánicos , Reactores Biológicos , Celulosa/ultraestructura , Cristalización , Glucanos/química , Microfibrillas/ultraestructura , Reología , Estrés Mecánico
8.
Langmuir ; 35(13): 4726-4735, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30844287

RESUMEN

Graphene has been recognized as an enhanced platform for biosensors because of its high electron mobility. To integrate active membrane proteins into graphene-based materials for such applications, graphene's surface must be functionalized with lipids to mimic the biological environment of these proteins. Several studies have examined supported lipids on various types of graphene and obtained conflicting results for the lipid structure. Here, we present a correlative characterization technique based on fluorescence measurements in a Raman spectroscopy setup to study the lipid structure and dynamics on epitaxial graphene. Compared to other graphene variations, epitaxial graphene is grown on a substrate more conducive to production of electronics and offers unique topographic features. On the basis of experimental and computational results, we propose that a lipid sesquilayer (1.5 bilayer) forms on epitaxial graphene and demonstrate that the distinct surface features of epitaxial graphene affect the structure and diffusion of supported lipids.


Asunto(s)
Grafito/química , Lípidos de la Membrana/química , Nanotecnología/métodos , Difusión , Espectrometría Raman , Propiedades de Superficie
9.
ACS Appl Bio Mater ; 1(4): 936-953, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34996135

RESUMEN

Electromechanical coupling properties of biological materials, especially cellulose from plant cell walls and proteins from animals, are of great interest for applications in biocompatible sensors and actuators and ecofriendly energy harvesters. On the basis of their anisotropic nanostructures, cellulose and fibrous proteins such as collagen, silk, keratin, etc. are expected to be piezoelectric; however, this property does not necessarily translate to cellulose- or protein-containing bulk materials. In fact, the values of piezoelectric coefficients reported for cellulose and proteins in the literature vary over several orders of magnitude, which raises the question of whether these are truly intrinsic piezoelectric properties of biological materials or whether they are obscured with other electromechanical coupling processes such as electrostriction, flexoelectricity, electrochemical transport, or electrostatic deformation. This critical question about intrinsic and extrinsic electromechanical coupling mechanisms is reviewed in this article. The origin of piezoelectricity of cellulose and collagen (the most widely studied protein for piezoelectricity) is discussed based on their molecular structures. Key requirements to construct macroscopic piezoelectric biocomposites are addressed in terms of packing orders or arrangements of polar domains in composites. On the basis of this structural argument, truly piezoelectric responses of macroscopic materials fabricated with or containing cellulose and collagen are found to be extremely difficult to observe or quantify; most values reported in the literature as piezoelectric coefficients of such materials appear to originate from other electromechanical coupling mechanisms. Clarifying these mechanisms is important to properly design electromechanical devices using biobased materials.

10.
Appl Spectrosc ; 71(7): 1494-1505, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28664781

RESUMEN

Broadband mid-infrared molecular spectroscopy is essential for detection and identification of many chemicals and materials. In this report, we present stand-off mid-infrared spectra of 1,3,5-trinitro-1,3,5-triazine or cyclotrimethylene trinitramine (RDX) residues on a stainless-steel surface measured by a broadband external cavity quantum cascade laser (QCL) system. The pulsed QCL is continuously scanned over 800 cm-1 in the molecular fingerprint region and the amplitude of the reflection signal is measured by either a boxcar-averager-based scheme or a lock-in-amplifier-based scheme with 1 MHz and 100 kHz quartz crystal oscillators. The main background noise is due to the laser source instability and is around 0.1% of normalized intensity. The direct absorption spectra have linewidth resolution around 0.1 cm-1 and peak height sensitivity around 10-2 due to baseline interference fringes. Stand-off detection of 5-50 µg/cm2 of RDX trace adsorbed on a stainless steel surface at the distance of 5 m is presented.

11.
Anal Chem ; 88(19): 9678-9684, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27599117

RESUMEN

This paper reports a highly sensitive and selective remote chemical sensing platform for surface-adsorbed trace chemicals by using infrared (IR)-sensitive hydrogel microcantilevers. Poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microcantilevers are fabricated by ultraviolet (UV) curing of PEG-DA prepolymer introduced into a poly(dimethylsiloxane) mold. The resonance frequency of a PEG-DA microcantilever exhibits high thermal sensitivity due to IR irradiation/absorption. When a tunable IR laser beam is reflected off a surface coated with target chemical onto a PEG-DA microcantilever, the resonance frequency of the cantilever shifts in proportion to the chemical nature of the target molecules. Dynamic responses of the PEG-DA microcantilever can be obtained in a range of IR wavelengths using a tunable quantum cascade laser that can form the basis for the standoff mechanical resonance spectroscopy (SMRS). Using this SMRS technique, we have selectively detected three compounds, dimethyl methyl phosphonate (DMMP), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN), located 4 m away from the PEG-DA microcantilever detector. The experimentally measured limit of detection for PETN trace using the PEG-DA microcantilever was 40 ng/cm2. Overall, the PEG-DA microcantilever is a promising candidate for further exploration and optimization of standoff detection methods.

12.
Anal Chem ; 87(14): 7125-32, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26111073

RESUMEN

An electronic nose (e-nose) for identification and quantification of volatile organic compounds (VOCs) vapor mixtures was developed using nanopore-enhanced opto-calorimetric spectroscopy. Opto-calorimetric spectroscopy based on specific molecular vibrational transitions in the mid infrared (IR) "molecular fingerprint" regime allows highly selective detection of VOCs vapor mixtures. Nanoporous anodic aluminum oxide (AAO) microcantilevers, fabricated using a two-step anodization and simple photolithography process, were utilized as highly sensitive thermomechanical sensors for opto-calorimetric signal transduction. The AAO microcantilevers were optimized by fine-tuning AAO nanopore diameter in order to enhance their thermomechanical sensitivity as well as their surface area. The thermomechanical sensitivity of a bilayer AAO microcantilever with a 60 nm pore diameter was approximately 1 µm/K, which is far superior to that of a bilayer plain silicon (Si) microcantilever. The adsorbed molecules of VOCs mixtures on the AAO microcantilever were fully recognized and quantified by variations of peak positions and amplitudes in the opto-calorimetric IR spectra as well as by shifts in the resonance frequency of the AAO microcantilever with the adsorbed molecules. Furthermore, identification of complex organic compounds with a real industrial sample was demonstrated by this e-nose system.


Asunto(s)
Nariz Electrónica , Gases/química , Nanoporos , Compuestos Orgánicos Volátiles/análisis , Óxido de Aluminio/química , Técnicas Biosensibles , Calorimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...