Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14807, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926479

RESUMEN

The study of muscle mass as an imaging-derived phenotype (IDP) may yield new insights into determining the normal and pathologic variations in muscle mass in the population. This can be done by determining 3D abdominal muscle mass from 12 distinct abdominal muscle regions and groups using computed tomography (CT) in a racially diverse medical biobank. To develop a fully automatic technique for assessment of CT abdominal muscle IDPs and preliminarily determine abdominal muscle IDP variations with age and sex in a clinically and racially diverse medical biobank. This retrospective study was conducted using the Penn Medicine BioBank (PMBB), a research protocol that recruits adult participants during outpatient visits at hospitals in the Penn Medicine network. We developed a deep residual U-Net (ResUNet) to segment 12 abdominal muscle groups including the left and right psoas, quadratus lumborum, erector spinae, gluteus medius, rectus abdominis, and lateral abdominals. 110 CT studies were randomly selected for training, validation, and testing. 44 of the 110 CT studies were selected to enrich the dataset with representative cases of intra-abdominal and abdominal wall pathology. The studies were divided into non-overlapping training, validation and testing sets. Model performance was evaluated using the Sørensen-Dice coefficient. Volumes of individual muscle groups were plotted to distribution curves. To investigate associations between muscle IDPs, age, and sex, deep learning model segmentations were performed on a larger abdominal CT dataset from PMBB consisting of 295 studies. Multivariable models were used to determine relationships between muscle mass, age and sex. The model's performance (Dice scores) on the test data was the following: psoas: 0.85 ± 0.12, quadratus lumborum: 0.72 ± 0.14, erector spinae: 0.92 ± 0.07, gluteus medius: 0.90 ± 0.08, rectus abdominis: 0.85 ± 0.08, lateral abdominals: 0.85 ± 0.09. The average Dice score across all muscle groups was 0.86 ± 0.11. Average total muscle mass for females was 2041 ± 560.7 g with a high of 2256 ± 560.1 g (41-50 year old cohort) and a change of - 0.96 g/year, declining to an average mass of 1579 ± 408.8 g (81-100 year old cohort). Average total muscle mass for males was 3086 ± 769.1 g with a high of 3385 ± 819.3 g (51-60 year old cohort) and a change of - 1.73 g/year, declining to an average mass of 2629 ± 536.7 g (81-100 year old cohort). Quadratus lumborum was most highly correlated with age for both sexes (correlation coefficient of - 0.5). Gluteus medius mass in females was positively correlated with age with a coefficient of 0.22. These preliminary findings show that our CNN can automate detailed abdominal muscle volume measurement. Unlike prior efforts, this technique provides 3D muscle segmentations of individual muscles. This technique will dramatically impact sarcopenia diagnosis and research, elucidating its clinical and public health implications. Our results suggest a peak age range for muscle mass and an expected rate of decline, both of which vary between genders. Future goals are to investigate genetic variants for sarcopenia and malnutrition, while describing genotype-phenotype associations of muscle mass in healthy humans using imaging-derived phenotypes. It is feasible to obtain 3D abdominal muscle IDPs with high accuracy from patients in a medical biobank using fully automated machine learning methods. Abdominal muscle IDPs showed significant variations in lean mass by age and sex. In the future, this tool can be leveraged to perform a genome-wide association study across the medical biobank and determine genetic variants associated with early or accelerated muscle wasting.


Asunto(s)
Músculos Abdominales , Bancos de Muestras Biológicas , Fenotipo , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Anciano , Músculos Abdominales/diagnóstico por imagen , Factores de Edad , Factores Sexuales , Anciano de 80 o más Años
2.
J Med Case Rep ; 15(1): 302, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34039402

RESUMEN

BACKGROUND: Jejunal lymphatic malformations are congenital lesions that are seldom diagnosed in adults and rarely seen on imaging. CASE PRESENTATION: A 61-year-old Caucasian woman was initially diagnosed and treated for mucinous ovarian carcinoma. After an exploratory laparotomy with left salpingo-oophorectomy, a computed tomography scan of the abdomen and pelvis demonstrated suspicious fluid-containing lesions involving a segment of jejunum and adjacent mesentery. Resection of the lesion during subsequent debulking surgery revealed that the lesion seen on imaging was a jejunal lymphatic malformation and not a cancerous implant. CONCLUSIONS: Abdominal lymphatic malformations are difficult to diagnose solely on imaging but should remain on the differential in adult cancer patients with persistent cystic abdominal lesions despite chemotherapy and must be differentiated from metastatic implants.


Asunto(s)
Adenocarcinoma Mucinoso , Yeyuno , Adulto , Femenino , Humanos , Yeyuno/diagnóstico por imagen , Yeyuno/cirugía , Laparotomía , Mesenterio , Persona de Mediana Edad , Tomografía Computarizada por Rayos X
3.
Abdom Radiol (NY) ; 46(9): 4388-4400, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33977352

RESUMEN

Minimally invasive alternatives to traditional prostate surgery are increasingly utilized to treat benign prostatic hyperplasia and localized prostate cancer in select patients. Advantages of these treatments over prostatectomy include lower risk of complication, shorter length of hospital stay, and a more favorable safety profile. Multiparametric magnetic resonance imaging (mpMRI) has become a widely accepted imaging modality for evaluation of the prostate gland and provides both anatomical and functional information. As prostate mpMRI and minimally invasive prostate procedure volumes increase, it is important for radiologists to be familiar with normal post-procedure imaging findings and potential complications. This paper reviews the indications, procedural concepts, common post-procedure imaging findings, and potential complications of prostatic artery embolization, prostatic urethral lift, irreversible electroporation, photodynamic therapy, high-intensity focused ultrasound, focal cryotherapy, and focal laser ablation.


Asunto(s)
Embolización Terapéutica , Imágenes de Resonancia Magnética Multiparamétrica , Hiperplasia Prostática , Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Masculino , Hiperplasia Prostática/diagnóstico por imagen , Hiperplasia Prostática/cirugía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía
4.
Radiol Imaging Cancer ; 3(3): e200024, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33929265

RESUMEN

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930-0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894-0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727-0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. Keywords: MRI, Genital/Reproductive, Prostate, Neural Networks Supplemental material is available for this article. © RSNA, 2021.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Estudios Retrospectivos
5.
J Endourol ; 35(9): 1411-1418, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33847156

RESUMEN

Background: Renal-cell carcinoma is the most common kidney cancer and the 13th most common cause of cancer death worldwide. Partial nephrectomy and percutaneous ablation, increasingly utilized to treat small renal masses and preserve renal parenchyma, require precise preoperative imaging interpretation. We sought to develop and evaluate a convolutional neural network (CNN), a type of deep learning (DL) artificial intelligence (AI), to act as a surgical planning aid by determining renal tumor and kidney volumes through segmentation on single-phase CT. Materials and Methods: After Institutional Review Board approval, the CT images of 319 patients were retrospectively analyzed. Two distinct CNNs were developed for (1) bounding cube localization of the right and left hemiabdomen and (2) segmentation of the renal parenchyma and tumor within each bounding cube. Training was performed on a randomly selected cohort of 269 patients. CNN performance was evaluated on a separate cohort of 50 patients using Sorensen-Dice coefficients (which measures the spatial overlap between the manually segmented and neural network-derived segmentations) and Pearson correlation coefficients. Experiments were run on a graphics processing unit-optimized workstation with a single NVIDIA GeForce GTX Titan X (12GB, Maxwell Architecture). Results: Median Dice coefficients for kidney and tumor segmentation were 0.970 and 0.816, respectively; Pearson correlation coefficients between CNN-generated and human-annotated estimates for kidney and tumor volume were 0.998 and 0.993 (p < 0.001), respectively. End-to-end trained CNNs were able to perform renal parenchyma and tumor segmentation on a new test case in an average of 5.6 seconds. Conclusions: Initial experience with automated DL AI demonstrates that it is capable of rapidly and accurately segmenting kidneys and renal tumors on single-phase contrast-enhanced CT scans and calculating tumor and renal volumes.


Asunto(s)
Aprendizaje Profundo , Neoplasias Renales , Inteligencia Artificial , Humanos , Procesamiento de Imagen Asistido por Computador , Riñón/diagnóstico por imagen , Riñón/cirugía , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Nefronas/diagnóstico por imagen , Nefronas/cirugía , Estudios Retrospectivos
6.
Emerg Radiol ; 27(6): 781-784, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32504280

RESUMEN

PURPOSE: The coronavirus disease 2019 (COVID-19) pandemic has led to significant disruptions in the healthcare system including surges of infected patients exceeding local capacity, closures of primary care offices, and delays of non-emergent medical care. Government-initiated measures to decrease healthcare utilization (i.e., "flattening the curve") have included shelter-in-place mandates and social distancing, which have taken effect across most of the USA. We evaluate the immediate impact of the Public Health Messaging and shelter-in-place mandates on Emergency Department (ED) demand for radiology services. METHODS: We analyzed ED radiology volumes from the five University of California health systems during a 2-week time period following the shelter-in-place mandate and compared those volumes with March 2019 and early April 2019 volumes. RESULTS: ED radiology volumes declined from the 2019 baseline by 32 to 40% (p < 0.001) across the five health systems with a total decrease in volumes across all 5 systems by 35% (p < 0.001). Stratifying by subspecialty, the smallest declines were seen in non-trauma thoracic imaging, which decreased 18% (p value < 0.001), while all other non-trauma studies decreased by 48% (p < 0.001). CONCLUSION: Total ED radiology demand may be a marker for public adherence to shelter-in-place mandates, though ED chest radiology demand may increase with an increase in COVID-19 cases.


Asunto(s)
Infecciones por Coronavirus/diagnóstico por imagen , Infecciones por Coronavirus/epidemiología , Diagnóstico por Imagen/estadística & datos numéricos , Servicio de Urgencia en Hospital , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/epidemiología , Betacoronavirus , COVID-19 , California/epidemiología , Femenino , Humanos , Masculino , Pandemias , Cuarentena , SARS-CoV-2 , Revisión de Utilización de Recursos
7.
Cancers (Basel) ; 12(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403240

RESUMEN

Prostate carcinoma is one of the most prevalent cancers worldwide. Multiparametric magnetic resonance imaging (mpMRI) is a non-invasive tool that can improve prostate lesion detection, classification, and volume quantification. Machine learning (ML), a branch of artificial intelligence, can rapidly and accurately analyze mpMRI images. ML could provide better standardization and consistency in identifying prostate lesions and enhance prostate carcinoma management. This review summarizes ML applications to prostate mpMRI and focuses on prostate organ segmentation, lesion detection and segmentation, and lesion characterization. A literature search was conducted to find studies that have applied ML methods to prostate mpMRI. To date, prostate organ segmentation and volume approximation have been well executed using various ML techniques. Prostate lesion detection and segmentation are much more challenging tasks for ML and were attempted in several studies. They largely remain unsolved problems due to data scarcity and the limitations of current ML algorithms. By contrast, prostate lesion characterization has been successfully completed in several studies because of better data availability. Overall, ML is well situated to become a tool that enhances radiologists' accuracy and speed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA