Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 326(1): F30-F38, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916286

RESUMEN

Plasma nucleosides-pseudouridine (PU) and N2N2-dimethyl guanosine (DMG) predict the progression of type 2 diabetic kidney disease (DKD) to end-stage renal disease, but the mechanisms underlying this relationship are not well understood. We used a well-characterized model of type 2 diabetes (db/db mice) and control nondiabetic mice (db/m mice) to characterize the production and excretion of PU and DMG levels using liquid chromatography-mass spectrometry. The fractional excretion of PU and DMG was decreased in db/db mice compared with control mice at 24 wk before any changes to renal function. We then examined the dynamic changes in nucleoside metabolism using in vivo metabolic flux analysis with the injection of labeled nucleoside precursors. Metabolic flux analysis revealed significant decreases in the ratio of urine-to-plasma labeling of PU and DMG in db/db mice compared with db/m mice, indicating significant tubular dysfunction in diabetic kidney disease. We observed that the gene and protein expression of the renal tubular transporters involved with nucleoside transport in diabetic kidneys in mice and humans was reduced. In conclusion, this study strongly suggests that tubular handling of nucleosides is altered in early DKD, in part explaining the association of PU and DMG with human DKD progression observed in previous studies.NEW & NOTEWORTHY Tubular dysfunction explains the association between the nucleosides pseudouridine and N2N2-dimethyl guanosine and diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Seudouridina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Nucleósidos/metabolismo , Eliminación Renal , Riñón/metabolismo , Guanosina/metabolismo
2.
J Biol Chem ; 299(4): 103057, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822331

RESUMEN

CLEC16A is an E3 ubiquitin ligase that regulates mitochondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover. IDPRs lack a fixed secondary structure and possess emerging yet still equivocal roles in protein stability, interactions, and enzymatic activity. We find that the internal IDPR of CLEC16A is crucial for its degradation. CLEC16A turnover was promoted by RNF41, which binds and acts upon the internal IDPR to destabilize CLEC16A. Loss of this internal IDPR also destabilized the ubiquitin-dependent tripartite CLEC16A-RNF41-USP8 complex. Finally, the presence of an internal IDPR within CLEC16A was confirmed using NMR and CD spectroscopy. Together, our studies reveal that an IDPR is essential to control the reciprocal regulatory balance between CLEC16A and RNF41, which could be targeted to improve mitochondrial health in disease.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Mitofagia , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Lectinas Tipo C/metabolismo
3.
Autophagy ; 19(2): 525-543, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35604110

RESUMEN

CLEC16A regulates mitochondrial health through mitophagy and is associated with over 20 human diseases. However, the key structural and functional regions of CLEC16A, and their relevance for human disease, remain unknown. Here, we report that a disease-associated CLEC16A variant lacks a C-terminal intrinsically disordered protein region (IDPR) that is critical for mitochondrial quality control. IDPRs comprise nearly half of the human proteome, yet their mechanistic roles in human disease are poorly understood. Using carbon detect NMR, we find that the CLEC16A C terminus lacks secondary structure, validating the presence of an IDPR. Loss of the CLEC16A C-terminal IDPR in vivo impairs mitophagy, mitochondrial function, and glucose-stimulated insulin secretion, ultimately causing glucose intolerance. Deletion of the CLEC16A C-terminal IDPR increases CLEC16A ubiquitination and degradation, thus impairing assembly of the mitophagy regulatory machinery. Importantly, CLEC16A stability is dependent on proline bias within the C-terminal IDPR, but not amino acid sequence order or charge. Together, we elucidate how an IDPR in CLEC16A regulates mitophagy and implicate pathogenic human gene variants that disrupt IDPRs as novel contributors to diabetes and other CLEC16A-associated diseases.Abbreviations : CAS: carbon-detect amino-acid specific; IDPR: intrinsically disordered protein region; MEFs: mouse embryonic fibroblasts; NMR: nuclear magnetic resonance.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Mitofagia , Humanos , Animales , Ratones , Mitofagia/genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Autofagia , Fibroblastos/metabolismo , Ubiquitinación , Proteínas de Transporte de Monosacáridos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo
4.
JCI Insight ; 5(24)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33232298

RESUMEN

Inflammatory damage contributes to ß cell failure in type 1 and 2 diabetes (T1D and T2D, respectively). Mitochondria are damaged by inflammatory signaling in ß cells, resulting in impaired bioenergetics and initiation of proapoptotic machinery. Hence, the identification of protective responses to inflammation could lead to new therapeutic targets. Here, we report that mitophagy serves as a protective response to inflammatory stress in both human and rodent ß cells. Utilizing in vivo mitophagy reporters, we observed that diabetogenic proinflammatory cytokines induced mitophagy in response to nitrosative/oxidative mitochondrial damage. Mitophagy-deficient ß cells were sensitized to inflammatory stress, leading to the accumulation of fragmented dysfunctional mitochondria, increased ß cell death, and hyperglycemia. Overexpression of CLEC16A, a T1D gene and mitophagy regulator whose expression in islets is protective against T1D, ameliorated cytokine-induced human ß cell apoptosis. Thus, mitophagy promotes ß cell survival and prevents diabetes by countering inflammatory injury. Targeting this pathway has the potential to prevent ß cell failure in diabetes and may be beneficial in other inflammatory conditions.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Lectinas Tipo C/metabolismo , Mitofagia/fisiología , Proteínas de Transporte de Monosacáridos/metabolismo , Animales , Apoptosis , Supervivencia Celular , Complicaciones de la Diabetes , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/metabolismo , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Estrés Oxidativo , Cultivo Primario de Células , Sustancias Protectoras/metabolismo , Transducción de Señal
5.
Diabetes ; 67(2): 265-277, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29180353

RESUMEN

Mitophagy is a cellular quality-control pathway, which is essential for elimination of unhealthy mitochondria. While mitophagy is critical to pancreatic ß-cell function, the posttranslational signals governing ß-cell mitochondrial turnover are unknown. Here, we report that ubiquitination is essential for the assembly of a mitophagy regulatory complex, comprised of the E3 ligase Nrdp1, the deubiquitinase enzyme USP8, and Clec16a, a mediator of ß-cell mitophagy with unclear function. We discover that the diabetes gene Clec16a encodes an E3 ligase, which promotes nondegradative ubiquitin conjugates to direct its mitophagy effectors and stabilize the Clec16a-Nrdp1-USP8 complex. Inhibition of the Clec16a pathway by the chemotherapeutic lenalidomide, a selective ubiquitin ligase inhibitor associated with new-onset diabetes, impairs ß-cell mitophagy, oxygen consumption, and insulin secretion. Indeed, patients treated with lenalidomide develop compromised ß-cell function. Moreover, the ß-cell Clec16a-Nrdp1-USP8 mitophagy complex is destabilized and dysfunctional after lenalidomide treatment as well as after glucolipotoxic stress. Thus, the Clec16a-Nrdp1-USP8 complex relies on ubiquitin signals to promote mitophagy and maintain mitochondrial quality control necessary for optimal ß-cell function.


Asunto(s)
Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células Secretoras de Insulina/metabolismo , Lectinas Tipo C/metabolismo , Mitofagia , Proteínas de Transporte de Monosacáridos/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Línea Celular , Células Cultivadas , Cruzamientos Genéticos , Endopeptidasas/química , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Lectinas Tipo C/antagonistas & inhibidores , Lectinas Tipo C/química , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitofagia/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Bancos de Tejidos , Técnicas de Cultivo de Tejidos , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
6.
Neurosci Lett ; 595: 7-11, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25841790

RESUMEN

The mechanisms underlying alterations in brain functions in response to physical exercise are not fully understood. The present study examined the central effect of irisin, a 112 amino acid polypeptide hormone secreted from the skeletal muscle after exercise, on the locomotion in rats. Central administration of irisin significantly increased the locomotion. Relative to control animals treated with IgG Fc peptide, rats receiving irisin demonstrated a marked increase in total travel distance, ambulatory counts and time, and vertical counts and time. These changes were associated with a significant decrease in resting time. Central treatment of irisin also induced significant increases in oxygen consumption, carbon dioxide production and heat production, indicating an increase in metabolic activity. Our study suggests that physical activity may signal to the central nervous system to coordinate locomotion with metabolic activity via irisin.


Asunto(s)
Fibronectinas/farmacología , Actividad Motora/efectos de los fármacos , Animales , Dióxido de Carbono/metabolismo , Fibronectinas/metabolismo , Inyecciones Intraventriculares , Locomoción/efectos de los fármacos , Masculino , Consumo de Oxígeno/efectos de los fármacos , Ratas Sprague-Dawley
7.
Cardiovasc Drugs Ther ; 29(2): 121-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25820670

RESUMEN

INTRODUCTION: Irisin is a newly identified 112 amino acid hormone, derived as a product of fibronectin type III domain containing 5 (FNDC5), which is highly related to metabolic activity in skeletal muscle and brown fat. The effects of irisin on cardiovascular functions are unknown. PURPOSE: To explore the effects of central and peripheral irisin on cardiovascular functions. METHODS: Irisin was either administrated into 3rd ventricle of rats or intravenously, and its effects on blood pressure and cardiac contractibility measured. RESULTS: Administration of recombinant human irisin into the 3rd brain ventricle of rats activated neurons in the paraventricular nuclei of the hypothalamus. Central administration of irisin increased blood pressure and cardiac contractibility. Exogenous irisin reversed atenolol-induced inhibition of cardiac contractibility. In contrast, peripheral administration of irisin reduced blood pressure in both control and spontaneously hypertensive rats. Irisin dilated mesenteric artery rings through ATP-sensitive potassium channels. CONCLUSION: Our studies indicate that central and peripheral irisin may differentially regulate cardiovascular activities.


Asunto(s)
Presión Sanguínea/fisiología , Fibronectinas/fisiología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Administración Intravenosa , Animales , Presión Sanguínea/efectos de los fármacos , Fibronectinas/administración & dosificación , Fibronectinas/farmacología , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Infusiones Intraventriculares , Canales KATP/efectos de los fármacos , Canales KATP/fisiología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Ratas , Ratas Endogámicas SHR , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
8.
J Gastrointest Surg ; 18(8): 1495-506, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24916589

RESUMEN

BACKGROUND: In inflammatory bowel disease, autonomic dysfunction contributes to symptoms, morbidity, and health care resource utilization. Efferent vagal neurons, which provide the primary parasympathetic input to the gastrointestinal tract, are housed in the dorsal motor nucleus of the vagus (DMV) in the brainstem. This study seeks to characterize the effects of IBD on DMV neuronal survival and function. METHODS: TNBS (picrylsulfonic acid) was administered by enema to induce colitis in rats. Brain sections through the DMV were examined for neuronal apoptosis using TUNEL labeling, and for glial cell activation by immunofluorescence. Prothrombin production was evaluated via quantitative RT-PCR from DMV tissue, as well as by double immunofluorescence in DMV sections. To investigate the effects of thrombin in the DMV, thrombin or thrombin and an antagonist to its receptor were administered into the fourth ventricle via a stereotactically placed cannula. DMV sections were then examined for apoptosis by TUNEL assay. To evaluate the effect of thrombin on DMV neuronal function, we examined calcium signaling in primary DMV neuron cultures following exposure to thrombin and other neurotransmitters. RESULTS: TNBS colitis is associated with significantly increased rates of DMV neuronal apoptosis, affecting 12.7 % of DMV neurons in animals with colitis, compared to 3.4 % in controls. There was a corresponding increase in DMV neuron activated caspase-3 immunoreactivity (14.8 vs. 2.6 % of DMV neurons). TNBS-treated animals also demonstrated significantly increased DMV astrocyte and microglial immunoreactivity, indicating glial cell activation. DMV prothrombin production was significantly increased in TNBS colitis, with a close anatomic relationship between prothrombin and microglia. Direct DMV exposure to thrombin replicated the apoptosis and activation of caspase-3 seen in TNBS colitis; these effects were prevented by coadministration of the PAR-1 inhibitor FR171113. Cultured DMV neurons exhibited impaired calcium signaling in response to neurotransmitters following exposure to thrombin. Glutamate-induced calcium transients decreased by 59 %, and those triggered by GABA were reduced by 61 %. PAR-1 antagonism prevented these thrombin-induced changes in calcium signaling. CONCLUSIONS: IBD is associated with DMV microglial activation and production of prothrombin. Thrombin in the DMV causes vagal neuron apoptosis and decreased sensitivity to neurotransmitters.


Asunto(s)
Apoptosis , Tronco Encefálico/fisiopatología , Colitis Ulcerosa/fisiopatología , Neuronas/fisiología , Protrombina/metabolismo , Trombina/metabolismo , Nervio Vago/fisiopatología , Animales , Biomarcadores/metabolismo , Tronco Encefálico/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Trinitrobencenosulfónico
9.
J Gastrointest Surg ; 18(9): 1632-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24961441

RESUMEN

BACKGROUND: The role of peripheral tumor necrosis factor alpha (TNFα) in inflammatory bowel disease (IBD) is well established, but its central nervous system (CNS) effects are not understood. Thrombin, another mediator of inflammation in IBD, has been implicated in CNS vagal neuron apoptosis in the dorsal motor nucleus of the vagus (DMV). This study evaluates DMV TNFα exposure, characterizes effects of TNFα on DMV neurons, and identifies a relationship between DMV TNFα and thrombin in IBD. METHODS: 2,4,6-Trinitrobenzene sulfonic acid was administered via enema to induce colonic inflammation in rats. TNFα in serum, cerebrospinal fluid (CSF), and DMV tissues were determined by ELISA and DMV TNFα expression by quantitative reverse transcription PCR (RT-PCR). TNFα was administered into the fourth intracerebral ventricle (4 V) adjacent to the DMV, with and without blockade of TNF receptor 1 (TNFR1) and the thrombin receptor proteinase-activated receptor 1 (PAR1). Immunofluorescence was used to evaluate microglial activation (Cd11b) and prothrombin presence in DMV sections. Apoptosis was examined using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) and activated caspase-3 immunofluorescence. RESULTS: IBD is associated with increased TNFα protein in serum, CSF, and DMV tissue; DMV TNFα transcription is also increased. TNFα (4 V) caused a 54 % increase in microglial activation, a 27 % increase in DMV prothrombin protein, and a 31 % increase in vagal neuron apoptosis by TUNEL. There was a 52 % increase in activated caspase-3 immunofluorescence in TNFα-treated animals (p < 0.05). All effects of 4 V TNFα were prevented by TNFR1 blockade. TNFα-induced apoptosis was prevented by PAR1 blockade. CONCLUSIONS: IBD is associated with DMV exposure to TNFα, causing excess DMV prothrombin and vagal apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/metabolismo , Neuronas Eferentes/efectos de los fármacos , Neuronas Eferentes/metabolismo , Trombina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Antígeno CD11b/metabolismo , Caspasa 3/metabolismo , Enfermedades Inflamatorias del Intestino/inducido químicamente , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Protrombina/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor PAR-1/antagonistas & inhibidores , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Ácido Trinitrobencenosulfónico , Factor de Necrosis Tumoral alfa/genética , Nervio Vago
10.
Endocrinology ; 155(2): 429-40, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24280058

RESUMEN

The hypothalamus plays a key role in the regulation of feeding behavior. Several hypothalamic nuclei, including the arcuate nucleus (ARC), paraventricular nucleus, and ventromedial nucleus of the hypothalamus (VMH), are involved in energy homeostasis. Analysis of microarray data derived from ARC revealed that leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) is highly expressed. LGR4, LGR5, and LGR6 form a subfamily of closely related receptors. Recently, R-spondin (Rspo) family proteins were identified as ligands of the LGR4 subfamily. In the present study, we investigated the distribution and function of LGR4-LGR6 and Rspos (1-4) in the brain of male rat. In situ hybridization showed that LGR4 is expressed in the ARC, VMH, and median eminence of the hypothalamus. LGR4 colocalizes with neuropeptide Y, proopiomelanocortin, and brain-derived neurotrophic factor neurons. LGR5 is not detectable with in situ hybridization; LGR6 is only expressed in the epithelial lining of the lower portion of the third ventricle and median eminence. Rspo1 is expressed in the VMH and down-regulated with fasting. Rspo3 is expressed in the paraventricular nucleus and also down-regulated with fasting. Rspos 1 and 3 colocalize with the neuronal marker HuD, indicating that they are expressed by neurons. Injection of Rspo1 or Rspo3 into the third brain ventricle inhibited food intake. Rspo1 decreased neuropeptide Y and increased proopiomelanocortin expression in the ARC. Rspo1 and Rspo3 mRNA is up-regulated by insulin. These data indicate that Rspo1 and Rspo3 and their receptor LGR4 form novel circuits in the brain to regulate energy homeostasis.


Asunto(s)
Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ayuno , Hipotálamo/efectos de los fármacos , Insulina/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Ratas , Trombospondinas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA