Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2804, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990571

RESUMEN

Chemotherapy remains the standard of care for most cancers worldwide, however development of chemoresistance due to the presence of the drug-effluxing ATP binding cassette (ABC) transporters remains a significant problem. The development of safe and effective means to overcome chemoresistance is critical for achieving durable remissions in many cancer patients. We have investigated the energetic demands of ABC transporters in the context of the metabolic adaptations of chemoresistant cancer cells. Here we show that ABC transporters use mitochondrial-derived ATP as a source of energy to efflux drugs out of cancer cells. We further demonstrate that the loss of methylation-controlled J protein (MCJ) (also named DnaJC15), an endogenous negative regulator of mitochondrial respiration, in chemoresistant cancer cells boosts their ability to produce ATP from mitochondria and fuel ABC transporters. We have developed MCJ mimetics that can attenuate mitochondrial respiration and safely overcome chemoresistance in vitro and in vivo. Administration of MCJ mimetics in combination with standard chemotherapeutic drugs could therefore become an alternative strategy for treatment of multiple cancers.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Resistencia a Antineoplásicos/fisiología , Mitocondrias/metabolismo , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Proteínas del Choque Térmico HSP40/deficiencia , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Consumo de Oxígeno/efectos de los fármacos
2.
Nat Commun ; 11(1): 3360, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620763

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is considered the next major health epidemic with an estimated 25% worldwide prevalence. No drugs have yet been approved and NAFLD remains a major unmet need. Here, we identify MCJ (Methylation-Controlled J protein) as a target for non-alcoholic steatohepatitis (NASH), an advanced phase of NAFLD. MCJ is an endogenous negative regulator of the respiratory chain Complex I that acts to restrain mitochondrial respiration. We show that therapeutic targeting of MCJ in the liver with nanoparticle- and GalNAc-formulated siRNA efficiently reduces liver lipid accumulation and fibrosis in multiple NASH mouse models. Decreasing MCJ expression enhances the capacity of hepatocytes to mediate ß-oxidation of fatty acids and minimizes lipid accumulation, which results in reduced hepatocyte damage and fibrosis. Moreover, MCJ levels in the liver of NAFLD patients are elevated relative to healthy subjects. Thus, inhibition of MCJ emerges as an alternative approach to treat NAFLD.


Asunto(s)
Ácidos Grasos/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Hígado/patología , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Adulto , Anciano , Animales , Conjuntos de Datos como Asunto , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas del Choque Térmico HSP40/genética , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Nanopartículas/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción/efectos de los fármacos , Cultivo Primario de Células , ARN Interferente Pequeño/administración & dosificación , RNA-Seq
3.
Haematologica ; 105(8): 2174-2186, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31699790

RESUMEN

Macaques are emerging as a critical animal model in transfusion medicine, because of their evolutionary similarity to humans and perceived utility in discovery and translational science. However, little is known about the metabolism of Rhesus macaque red blood cells (RBC) and how this compares to human RBC metabolism under standard blood banking conditions. Metabolomic and lipidomic analyses, and tracing experiments with [1,2,3-13C3]glucose, were performed using fresh and stored RBC (sampled weekly until storage day 42) obtained from Rhesus macaques (n=20) and healthy human volunteers (n=21). These results were further validated with targeted quantification against stable isotope-labeled internal standards. Metabolomic analyses demonstrated inter-species differences in RBC metabolism independent of refrigerated storage. Although similar trends were observed throughout storage for several metabolic pathways, species- and sex-specific differences were also observed. The most notable differences were in glutathione and sulfur metabolites, purine and lipid oxidation metabolites, acylcarnitines, fatty acyl composition of several classes of lipids (including phosphatidylserines), glyoxylate pathway intermediates, and arginine and carboxylic acid metabolites. Species-specific dietary and environmental compounds were also detected. Overall, the results suggest an increased basal and refrigerator-storage-induced propensity for oxidant stress and lipid remodeling in Rhesus macaque RBC cells, as compared to human red cells. The overlap between Rhesus macaque and human RBC metabolic phenotypes suggests the potential utility of a translational model for simple RBC transfusions, although inter-species storage-dependent differences need to be considered when modeling complex disease states, such as transfusion in trauma/hemorrhagic shock models.


Asunto(s)
Conservación de la Sangre , Eritrocitos , Animales , Bancos de Sangre , Transfusión de Eritrocitos , Femenino , Humanos , Macaca mulatta , Masculino
4.
Mol Metab ; 29: 40-54, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31668391

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolic pathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation and fibrosis. The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, is downregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression. METHODS: miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Different in vitro and in vivo NAFLD murine models were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy. RESULTS: We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria. In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinical murine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating with hepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation and fibrosis by enhancing fatty acid ß-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment. CONCLUSION: GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activity in the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Glicina N-Metiltransferasa/metabolismo , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto , Animales , Antagomirs/metabolismo , Antagomirs/uso terapéutico , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Femenino , Glicina N-Metiltransferasa/deficiencia , Glicina N-Metiltransferasa/genética , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Persona de Mediana Edad , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regulación hacia Arriba
5.
Ultrasound Med Biol ; 45(12): 3222-3231, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31540758

RESUMEN

Delivery of small interfering RNAs (siRNAs) into primary T cells is quite challenging because they are non-proliferating cells and are difficult to transfect with non-viral approaches. Because sonoporation is independent of the proliferation status of cells and siRNA acts in the cell cytoplasm, we investigated whether sonoporation could be used to deliver siRNA into mouse and human T cells. Cells mixed with Definity microbubbles and siRNA were sonicated with a non-focused transducer of center frequency 2.20 MHz producing ultrasound at a 10% duty cycle, pulse repetition frequency of 2.20 kHz and spatial average temporal average ultrasound intensity of 1.29 W/cm2 for 5 s and then examined for siRNA fluorescence by flow cytometry analysis. These sonoporation conditions resulted in high-efficiency transfection of siRNA in mouse and human T cells. Further, the efficacy of siRNA delivery by sonoporation was illustrated by the successful visualization of decreased methylation-controlled J protein expression in mouse and human CD8 T cells via Western blot analysis. The results provide the first evidence that sonoporation is a novel approach to delivery of siRNA into fresh isolated mouse and human T cells in vitro, and might be used for in vivo studies in the future.


Asunto(s)
ARN Interferente Pequeño/administración & dosificación , Sonicación/métodos , Linfocitos T , Animales , Western Blotting , Citometría de Flujo , Humanos , Técnicas In Vitro , Ratones , Modelos Animales
6.
Nutrients ; 11(6)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31207887

RESUMEN

Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the human body, but they are also exposed to all body tissues during their circulation in the bloodstream. In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging and age-related oxidant stress without the confounding factor of gene expression. In the present study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry (UHPLC-MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male mice (6, 15, and 25 months old). We report that RBCs from aging mice face a progressive decline in the capacity to cope with oxidant stress through the glutathione/NADPH-dependent antioxidant systems. Oxidant stress to tryptophan and purines was accompanied by declines in late glycolysis and methyl-group donors, a potential compensatory mechanism to repair oxidatively damaged proteins. Moreover, heterochronic parabiosis experiments demonstrated that the young environment only partially rescued the alterations in one-carbon metabolism in old mice, although it had minimal to no impact on glutathione homeostasis, the pentose phosphate pathway, and oxidation of purines and tryptophan, which were instead aggravated in old heterochronic parabionts.


Asunto(s)
Envejecimiento , Eritrocitos , Metaboloma/fisiología , Parabiosis , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Cromatografía Líquida de Alta Presión , Eritrocitos/química , Eritrocitos/metabolismo , Eritrocitos/fisiología , Masculino , Espectrometría de Masas , Redes y Vías Metabólicas/fisiología , Metabolómica , Ratones , Ratones Endogámicos C57BL , Proteoma/análisis , Proteoma/fisiología
7.
J Exp Med ; 213(11): 2281-2291, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27670591

RESUMEN

IL-6 is known to contribute to the differentiation of CD4+ T cells into different subsets of effector T helper cells. Less is known about the potential of IL-6 in regulating CD8+ T cell effector function. Here, we identify IL-6 as a master regulator of IL-21 in effector CD8+ T cells. IL-6 promotes the differentiation of a subset of naive CD8+ T cells that express IL-6R into a unique population of effector CD8+ T cells characterized by the production of high levels of IL-21 and low levels of IFN-γ. Similar to CD4+ T follicular helper (Tfh) cells, IL-21-producing CD8+ T cells generated in the presence of IL-6 directly provide help to B cells to induce isotype switching. CD8+ T cell-derived IL-21 contributes to the production of protective virus-specific IgG antibodies during influenza virus infection. Thus, this study reveals the presence of a new mechanism by which IL-6 regulates antibody production during viral infection, and a novel function of effector CD8+ T cells in the protection against viruses.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Interleucina-6/metabolismo , Interleucinas/biosíntesis , Animales , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G/metabolismo , Subgrupos Linfocitarios/metabolismo , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Factor de Transcripción STAT3/metabolismo
8.
JCI Insight ; 1(7)2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27275014

RESUMEN

Despite major advances in early detection and prognosis, chemotherapy resistance is a major hurdle in the battle against breast cancer. Identifying predictive markers and understanding the mechanisms are key steps to overcoming chemoresistance. Methylation-controlled J protein (MCJ, also known as DNAJC15) is a negative regulator of mitochondrial respiration and has been associated with chemotherapeutic drug sensitivity in cancer cell lines. Here we show, in a retrospective study of a large cohort of breast cancer patients, that low MCJ expression in breast tumors predicts high risk of relapse in patients treated with chemotherapy; however, MCJ expression does not correlate with response to endocrine therapy. In a prospective study in breast cancer patients undergoing neoadjuvant therapy, low MCJ expression also correlates with poor clinical response to chemotherapy and decreased disease-free survival. Using MCJ-deficient mice, we demonstrate that lack of MCJ is sufficient to induce mammary tumor chemoresistance in vivo. Thus, loss of expression of this endogenous mitochondrial modulator in breast cancer promotes the development of chemoresistance.

9.
Immunity ; 44(6): 1299-311, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27234056

RESUMEN

Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula , Células Cultivadas , Memoria Inmunológica , Interferón gamma/metabolismo , Activación de Linfocitos , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Fosforilación Oxidativa
10.
Mutat Res ; 761: 34-48, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24530429

RESUMEN

Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRß) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is similar for both genes and consistent with results at the TCRß locus. Non-templated (N) nucleotide insertions appear to increase between fetal and postnatal stages for Notch1, consistent with normal terminal deoxynucleotidyl transferase (TdT) activity; however, neonatal Bcl11b junctions contain elevated levels of N insertions. Finally, contrasting with results at the HPRT1 locus, we find no obvious age or gender bias in junctional processing, and inverted repeats at recessed coding ends (Pr nucleotides) correspond mostly to single-base additions consistent with normal TdT activity.


Asunto(s)
Receptor Notch1/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Recombinación V(D)J , Factores de Edad , Animales , Femenino , Eliminación de Gen , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Notch1/metabolismo , Proteínas Represoras/metabolismo , Factores Sexuales , Bazo/metabolismo , Linfocitos T/metabolismo , Timo/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...