Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 6348, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311506

RESUMEN

Long non-coding RNAs are important regulators of biological processes including immune responses. The immunoregulatory functions of lncRNAs have been revealed primarily in murine models with limited understanding of lncRNAs in human immune responses. Here, we identify lncRNA LUCAT1 which is upregulated in human myeloid cells stimulated with lipopolysaccharide and other innate immune stimuli. Targeted deletion of LUCAT1 in myeloid cells increases expression of type I interferon stimulated genes in response to LPS. By contrast, increased LUCAT1 expression results in a reduction of the inducible ISG response. In activated cells, LUCAT1 is enriched in the nucleus where it associates with chromatin. Further, LUCAT1 limits transcription of interferon stimulated genes by interacting with STAT1 in the nucleus. Together, our study highlights the role of the lncRNA LUCAT1 as a post-induction feedback regulator which functions to restrain the immune response in human cells.


Asunto(s)
Regulación de la Expresión Génica , Interferones/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Fenómenos Biológicos , Cromatina/metabolismo , Citocinas/metabolismo , Retroalimentación , Técnicas de Silenciamiento del Gen , Humanos , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Ratones , Células Mieloides/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas , Factor de Transcripción STAT1/metabolismo , Células THP-1
2.
Cell Rep ; 25(6): 1511-1524.e6, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404006

RESUMEN

An inducible gene expression program is a hallmark of the host inflammatory response. Recently, long intergenic non-coding RNAs (lincRNAs) have been shown to regulate the magnitude, duration, and resolution of these responses. Among these is lincRNA-Cox2, a dynamically regulated gene that broadly controls immune gene expression. To evaluate the in vivo functions of this lincRNA, we characterized multiple models of lincRNA-Cox2-deficient mice. LincRNA-Cox2-deficient macrophages and murine tissues had altered expression of inflammatory genes. Transcriptomic studies from various tissues revealed that deletion of the lincRNA-Cox2 locus also strongly impaired the basal and inducible expression of the neighboring gene prostaglandin-endoperoxide synthase (Ptgs2), encoding cyclooxygenase-2, a key enzyme in the prostaglandin biosynthesis pathway. By utilizing different genetic manipulations in vitro and in vivo, we found that lincRNA-Cox2 functions through an enhancer RNA mechanism to regulate Ptgs2. More importantly, lincRNA-Cox2 also functions in trans, independently of Ptgs2, to regulate critical innate immune genes in vivo.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Inmunidad/genética , Modelos Genéticos , ARN Largo no Codificante/metabolismo , Animales , Elementos de Facilitación Genéticos/genética , Eliminación de Gen , Regulación de la Expresión Génica , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , ARN/metabolismo , Empalme del ARN/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bazo/metabolismo , Transcripción Genética
3.
Eur J Immunol ; 46(3): 504-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26820238

RESUMEN

The innate immune system represents the first line of defense during infection and is initiated by the detection of conserved microbial products by germline-encoded pattern recognition receptors (PRRs). Sensing through PRRs induces broad transcriptional changes that elicit powerful inflammatory responses. Tight regulation of these processes depends on multiple regulatory checkpoints, including noncoding RNA species such as microRNAs. In addition, long noncoding RNAs (lncRNAs) have recently gained attention as important regulators of gene expression acting through versatile interactions with DNA, RNA, or proteins. As such, these RNAs have a multitude of mechanisms to modulate gene expression. Here, we summarize recent advances in this rapidly moving and evolving field. We highlight the contribution of lncRNAs to both the development and activation of innate immune cells, whether it is in the nucleus, where lncRNAs alter the transcription of target genes through interaction with transcription factors, chromatin-modifying complexes or heterogeneous ribonucleoprotein complexes, or in the cytosol where they can control the stability of target mRNAs. In addition, we discuss experimental approaches required to comprehensively investigate the function of a candidate noncoding RNA locus, including loss-of-function approaches encompassing genomic deletions, RNA interference, locked nucleic acids, and various adaptions of the CRISPR/Cas9 technology.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata , Inflamación/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sistemas CRISPR-Cas/genética , Núcleo Celular/genética , Eliminación de Gen , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Factores de Transcripción/genética
4.
J Immunol ; 196(2): 547-52, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26685207

RESUMEN

With the stimulator of IFN genes (STING) C terminus being extensively studied, the role of the N-terminal domain (NTD) of STING remains an important subject of investigation. In this article, we identify novel mutations in NTD of Sting of the MOLF strain in response to HSV and Listeria monocytogenes both in vitro and in vivo. These mutations are responsible for low levels of IFN-ß caused by failure of MOLF STING to translocate from the endoplasmic reticulum. These data provide evidence that the NTD of STING affects DNA responses via control of trafficking. They also show that the genetic diversity of wild-derived mice resembles the diversity observed in humans. Several human alleles of STING confer attenuated IFN-I production similar to what we observe with the MOLF Sting allele, a crucial functional difference not apparent in classical inbred mice. Thus, understanding the functional significance of polymorphisms in MOLF STING can provide basic mechanistic insights relevant to humans.


Asunto(s)
Interferón Tipo I/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Alelos , Animales , ADN/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Microscopía Confocal , Mutación , Transporte de Proteínas/fisiología
5.
J Immunol ; 195(4): 1359-63, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26179904

RESUMEN

Natural antisense transcripts (NATs) are a class of long noncoding RNAs (lncRNAs) that are complementary to other protein-coding genes. Although thousands of NATs are encoded by mammalian genomes, their functions in innate immunity are unknown. In this study, we identified and characterized a novel NAT, AS-IL1α, which is partially complementary to IL-1α. Similar to IL-1α, AS-IL1α is expressed at low levels in resting macrophages and is induced following infection with Listeria monocytogenes or stimulation with TLR ligands (Pam3CSK4, LPS, polyinosinic-polycytidylic acid). Inducible expression of IL-1α mRNA and protein were significantly reduced in macrophages expressing shRNA that target AS-IL1α. AS-IL1α is located in the nucleus and did not alter the stability of IL-1α mRNA. Instead, AS-IL1α was required for the recruitment of RNA polymerase II to the IL-1α promoter. In summary, our studies identify AS-IL1α as an important regulator of IL-1α transcription during the innate immune response.


Asunto(s)
Regulación de la Expresión Génica , Mediadores de Inflamación , Interleucina-1alfa/genética , ARN sin Sentido/genética , ARN no Traducido/genética , Transcripción Genética , Animales , Línea Celular , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Ligandos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Interferencia de ARN , Receptores Toll-Like/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(7): E710-7, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646421

RESUMEN

Cytosolic DNA-sensing pathways that signal via Stimulator of interferon genes (STING) mediate immunity to pathogens and also promote autoimmune pathology in DNaseII- and DNaseIII-deficient mice. In contrast, we report here that STING potently suppresses inflammation in a model of systemic lupus erythematosus (SLE). Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING-deficient autoimmune-prone mice compared with STING-sufficient littermates. As a result, STING-deficient autoimmune-prone mice had significantly shorter lifespans than controls. Importantly, Toll-like receptor (TLR)-dependent systemic inflammation during 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis was similarly aggravated in STING-deficient mice. Mechanistically, STING-deficient macrophages failed to express negative regulators of immune activation and thus were hyperresponsive to TLR ligands, producing abnormally high levels of proinflammatory cytokines. This hyperreactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo. Collectively these findings reveal an unexpected negative regulatory role for STING, having important implications for STING-directed therapies.


Asunto(s)
Autoinmunidad/fisiología , Proteínas de la Membrana/fisiología , Animales , Autoanticuerpos/biosíntesis , Células Dendríticas/inmunología , Regulación de la Expresión Génica/fisiología , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/fisiología , Interferones/fisiología , Activación de Linfocitos , Proteínas de la Membrana/genética , Ratones
7.
J Biol Chem ; 289(20): 13701-5, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24692555

RESUMEN

The inflammatory cytokine IL-1ß is critical for host responses against many human pathogens. Here, we define Group B Streptococcus (GBS)-mediated activation of the Nod-like receptor-P3 (NLRP3) inflammasome in macrophages. NLRP3 activation requires GBS expression of the cytolytic toxin, ß-hemolysin, lysosomal acidification, and leakage. These processes allow the interaction of GBS RNA with cytosolic NLRP3. The present study supports a model in which GBS RNA, along with lysosomal components including cathepsins, leaks out of lysosomes and interacts with NLRP3 to induce IL-1ß production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/biosíntesis , Macrófagos/metabolismo , ARN Bacteriano/metabolismo , Streptococcus agalactiae/fisiología , Animales , Humanos , Interleucina-1beta/metabolismo , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/citología , Macrófagos/microbiología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Fagosomas/metabolismo , Fagosomas/microbiología , Streptococcus agalactiae/metabolismo
8.
Cell Rep ; 6(1): 196-210, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24388751

RESUMEN

Hemozoin (Hz) is the crystalline detoxification product of hemoglobin in Plasmodium-infected erythrocytes. We previously proposed that Hz can carry plasmodial DNA into a subcellular compartment that is accessible to Toll-like receptor 9 (TLR9), inducing an inflammatory signal. Hz also activates the NLRP3 inflammasome in primed cells. We found that Hz appears to colocalize with DNA in infected erythrocytes, even before RBC rupture or phagolysosomal digestion. Using synthetic Hz coated in vitro with plasmodial genomic DNA (gDNA) or CpG oligodeoxynucleotides, we observed that DNA-complexed Hz induced TLR9 translocation, providing a priming and an activation signal for inflammasomes. After phagocytosis, Hz and DNA dissociate. Hz subsequently induces phagolysosomal destabilization, allowing phagolysosomal contents access to the cytosol, where DNA receptors become activated. Similar observations were made with Plasmodium-infected RBCs. Finally, infected erythrocytes activated both the NLRP3 and AIM2 inflammasomes. These observations suggest that Hz and DNA work together to induce systemic inflammation during malaria.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Protozoario/metabolismo , Hemoproteínas/metabolismo , Inflamasomas/metabolismo , Malaria/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Células Cultivadas , ADN Protozoario/farmacología , Proteínas de Unión al ADN , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Hemoproteínas/farmacología , Humanos , Inflamasomas/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Nucleares/genética , Fagocitosis , Plasmodium/patogenicidad , Receptor Toll-Like 9/metabolismo
9.
Nat Med ; 20(1): 47-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24362933

RESUMEN

Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a previously unrecognized pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5. This response, initiated by liver-resident cells through the adaptor molecule for cytosolic RNA sensors, Mavs, and the transcription factors Irf3 and Irf7, is propagated by hepatocytes in an interferon-α/ß receptor-dependent manner. This signaling pathway is critical for immune cell-mediated host resistance to liver-stage Plasmodium infection, which we find can be primed with other PAMPs, including hepatitis C virus RNA. Together, our results show that the liver has sensor mechanisms for Plasmodium that mediate a functional antiparasite response driven by type I IFN.


Asunto(s)
Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Hígado/parasitología , Plasmodium/inmunología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Western Blotting , ARN Helicasas DEAD-box/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Helicasa Inducida por Interferón IFIH1 , Hígado/inmunología , Luciferasas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Oligonucleótidos/genética , Plasmodium/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas
10.
Immunity ; 35(2): 194-207, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21820332

RESUMEN

Although Toll-like receptor 9 (TLR9) has been implicated in cytokine and type I interferon (IFN) production during malaria in humans and mice, the high AT content of the Plasmodium falciparum genome prompted us to examine the possibility that malarial DNA triggered TLR9-independent pathways. Over 6000 ATTTTTAC ("AT-rich") motifs are present in the genome of P. falciparum, which we show here potently induce type I IFNs. Parasite DNA, parasitized erythrocytes and oligonucleotides containing the AT-rich motif induce type I IFNs via a pathway that did not involve the previously described sensors TLR9, DAI, RNA polymerase-III or IFI16/p204. Rather, AT-rich DNA sensing involved an unknown receptor that coupled to the STING, TBK1 and IRF3-IRF7 signaling pathway. Mice lacking IRF3, IRF7, the kinase TBK1 or the type I IFN receptor were resistant to otherwise lethal cerebral malaria. Collectively, these observations implicate AT-rich DNA sensing via STING, TBK1 and IRF3-IRF7 in P. falciparum malaria.


Asunto(s)
Secuencia Rica en At/genética , ADN Protozoario/genética , Malaria Falciparum/inmunología , Oligonucleótidos/genética , Plasmodium falciparum/fisiología , Animales , ADN Protozoario/metabolismo , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/fisiopatología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Oligonucleótidos/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Interferón alfa y beta/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...