Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689348

RESUMEN

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Asunto(s)
Proteínas Hedgehog , Meduloblastoma , Células Madre Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástasis de la Neoplasia , Fenotipo , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Masculino , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Pronóstico , Movimiento Celular
2.
J Exp Clin Cancer Res ; 42(1): 346, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124207

RESUMEN

BACKGROUND: Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS: Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS: RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS: Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Animales , Preescolar , Humanos , Ratones , Apoptosis , Neoplasias del Sistema Nervioso Central/metabolismo , Reparación del ADN , Inhibidores Enzimáticos/uso terapéutico , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo
3.
Commun Biol ; 6(1): 629, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301920

RESUMEN

The molecular mechanisms contributing to the regulation of Th17-mediated inflammation remain underexplored. We here report a SUMO-specific protease (SENP)2-mediated pathway induced in pathogenic Th17 cells that restricts the pathogenesis of inflammatory colitis. SENP2 regulates the maturation of small ubiquitin-like modifiers (SUMO) and recycles SUMO from the substrate proteins. We find higher levels of SENP2 in pathogenic Th17 cells. By deleting Senp2 in T-cell lineages in mice, we demonstrate that the lack of Senp2 exacerbates the severity of experimental colitis, which is linked to elevated levels of GM-CSF+IL-17A+ pathogenic Th17 cells and more severe dysbiosis of the intestinal microbiome. Adoptive transfer experiments demonstrate the cell-autonomous effect of Senp2 in restraining Th17 differentiation and colitis. The enzymatic activity of SENP2 is important for deSUMOylation of Smad4, which reduces Smad4 nuclear entry and Rorc expression. Our findings reveal a SENP2-mediated regulatory axis in the pathogenicity of Th17 cells.


Asunto(s)
Colitis , Células Th17 , Ratones , Animales , Células Th17/metabolismo , Diferenciación Celular , Ubiquitina , Colitis/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo
4.
Cancers (Basel) ; 14(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36358838

RESUMEN

Medulloblastoma (MB) was classified into four molecular subgroups: WNT, SHH, group 3, and group 4. In 2017, 12 subtypes within 4 subgroups and 8 subtypes within non-WNT/non-SHH subgroups according to the differences of clinical features and biology were announced. In this study, we aimed to identify the heterogeneity of molecular features for discovering subtype specific factors linked to diagnosis and prognosis. We retrieved 70 MBs in children to perform RNA sequencing and a DNA methylation array in Taiwan. Integrated with clinical annotations, we achieved classification of 12 subtypes of pediatric MBs in our cohort series with reference to the other reported series. We analyzed the correlation of cell type enrichment in SHH MBs and found that M2 macrophages were enriched in SHH ß, which related to good outcomes of SHH MBs. The high infiltration of M2 macrophages may be an indicator of a favorable prognosis and therapeutic target for SHH MBs. Furthermore, C11orf95-RELA fusion was observed to be associated with recurrence and a poor prognosis. These results will contribute to the establishment of a molecular diagnosis linked to prognostic indicators of relevance and help to promote molecular-based risk stratified treatment for MBs in children.

5.
Cell Mol Life Sci ; 79(7): 367, 2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35718818

RESUMEN

Upregulation of death-domain-associated protein (Daxx) is strongly associated with diverse cancer types. Among these, the clinicopathological significance and molecular mechanisms of Daxx overexpression in colorectal cancer (CRC) remain unknown. Here, we showed that Daxx expression was increased in both clinical CRC samples and CRC cell lines. Daxx knockdown significantly reduced proliferation activity in CRC cells and tumor growth in a xenograft model. Further studies revealed that Daxx expression could be attenuated by either treatment with the PIK3CA inhibitor PIK-75 or PIK3CA depletion in CRC cells. Conversely, expression of PIK3CA constitutively active mutants could increase Daxx expression. These data suggest that PIK3CA positively regulates Daxx expression. Consistently, the expression levels of PIK3CA and Daxx were positively correlated in sporadic CRC samples. Interestingly, Daxx knockdown or overexpression yielded decreased or increased levels of PIK3CA, respectively, in CRC cells. We further demonstrated that Daxx activates the promoter activity and expression of PIK3CA. Altogether, our results identify a mechanistic pathway of Daxx overexpression in CRC and suggest a reciprocal regulation between Daxx and PIK3CA for CRC cell growth.


Asunto(s)
Neoplasias Colorrectales , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Proliferación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
6.
Oncogene ; 41(21): 3011-3023, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35459781

RESUMEN

Most cases of hepatocellular carcinoma (HCC) arise with the fibrotic microenvironment where hepatic stellate cells (HSCs) and carcinoma-associated fibroblasts (CAFs) are critical components in HCC progression. Therefore, CAF normalization could be a feasible therapy for HCC. Galectin-1 (Gal-1), a ß-galactoside-binding lectin, is critical for HSC activation and liver fibrosis. However, few studies has evaluated the pathological role of Gal-1 in HCC stroma and its role in hepatic CAF is unclear. Here we showed that Gal-1 mainly expressed in HCC stroma, but not cancer cells. High expression of Gal-1 is correlated with CAF markers and poor prognoses of HCC patients. In co-culture systems, targeting Gal-1 in CAFs or HSCs, using small hairpin (sh)RNAs or an therapeutic inhibitor (LLS30), downregulated plasminogen activator inhibitor-2 (PAI-2) production which suppressed cancer stem-like cell properties and invasion ability of HCC in a paracrine manner. The Gal-1-targeting effect was mediated by increased a disintegrin and metalloprotease 17 (ADAM17)-dependent TNF-receptor 1 (TNFR1) shedding/cleavage which inhibited the TNF-α → JNK → c-Jun/ATF2 signaling axis of pro-inflammatory gene transcription. Silencing Gal-1 in CAFs inhibited CAF-augmented HCC progression and reprogrammed the CAF-mediated inflammatory responses in a co-injection xenograft model. Taken together, the findings uncover a crucial role of Gal-1 in CAFs that orchestrates an inflammatory CSC niche supporting HCC progression and demonstrate that targeting Gal-1 could be a potential therapy for fibrosis-related HCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Fibroblastos/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Humanos , Neoplasias Hepáticas/patología , Estabilidad Proteica , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral
7.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270031

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) in shrimp is caused by Vibrio strains that harbor a pVA1-like plasmid containing the pirA and pirB genes. It is also known that the production of the PirA and PirB proteins, which are the key factors that drive the observed symptoms of AHPND, can be influenced by environmental conditions and that this leads to changes in the virulence of the bacteria. However, to our knowledge, the mechanisms involved in regulating the expression of the pirA/pirB genes have not previously been investigated. In this study, we show that in the AHPND-causing Vibrio parahaemolyticus 3HP strain, the pirAvp and pirBvp genes are highly expressed in the early log phase of the growth curve. Subsequently, the expression of the PirAvp and PirBvp proteins continues throughout the log phase. When we compared mutant strains with a deletion or substitution in two of the quorum sensing (QS) master regulators, luxO and/or opaR (luxOD47E, ΔopaR, ΔluxO, and ΔopaRΔluxO), our results suggested that expression of the pirAvp and pirBvp genes was related to the QS system, with luxO acting as a negative regulator of pirAvp and pirBvp without any mediation by opaRvp. In the promoter region of the pirAvp/pirBvp operon, we also identified a putative consensus binding site for the QS transcriptional regulator AphB. Real-time PCR further showed that aphBvp was negatively controlled by LuxOvp, and that its expression paralleled the expression patterns of pirAvp and pirBvp. An electrophoretic mobility shift assay (EMSA) showed that AphBvp could bind to this predicted region, even though another QS transcriptional regulator, AphAvp, could not. Taken together, these findings suggest that the QS system may regulate pirAvp/pirBvp expression through AphBvp.


Asunto(s)
Penaeidae , Toxinas Biológicas , Vibrio parahaemolyticus , Animales , Necrosis , Penaeidae/microbiología , Percepción de Quorum/genética , Toxinas Biológicas/metabolismo
8.
Mov Disord ; 37(4): 767-777, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34951052

RESUMEN

BACKGROUND: Polyglutamine (polyQ) diseases are dominant neurodegenerative diseases caused by an expansion of the polyQ-encoding CAG repeats in the disease-causing gene. The length of the CAG repeats is the major determiner of the age at onset (AO) of polyQ diseases, including Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). OBJECTIVE: We set out to identify common genetic variant(s) that may affect the AO of polyQ diseases. METHODS: Three hundred thirty-seven patients with HD or SCA3 were enrolled for targeted sequencing of 583 genes implicated in proteinopathies. In total, 16 genes were identified as containing variants that are associated with late AO of polyQ diseases. For validation, we further investigate the variants of PIAS1 because PIAS1 is an E3 SUMO (small ubiquitin-like modifier) ligase for huntingtin (HTT), the protein linked to HD. RESULTS: Biochemical analyses revealed that the ability of PIAS1S510G to interact with mutant huntingtin (mHTT) was less than that of PIAS1WT , resulting in lower SUMOylation of mHTT and lower accumulation of insoluble mHTT. Genetic knock-in of PIAS1S510G in a HD mouse model (R6/2) ameliorated several HD-like deficits (including shortened life spans, poor grip strength and motor coordination) and reduced neuronal accumulation of mHTT. CONCLUSIONS: Our findings suggest that PIAS1 is a genetic modifier of polyQ diseases. The naturally occurring variant, PIAS1S510G , is associated with late AO in polyQ disease patients and milder disease severity in HD mice. Our study highlights the possibility of targeting PIAS1 or pathways governing protein homeostasis as a disease-modifying approach for treating patients with HD. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Huntington , Proteostasis , Animales , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ligasas/metabolismo , Ratones , Péptidos , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
9.
Sci Rep ; 11(1): 23282, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857809

RESUMEN

Medulloblastoma is the most common embryonic brain tumor in children. We investigated a cohort of 52 Asian medulloblastoma patients aged between 0 and 19 years old, who received surgical resections and post-resection treatments in the Taipei Medical University Hospital and the Taipei Veterans General Hospital. Genome-wide RNA sequencing was performed on fresh-frozen surgical tissues. These data were analyzed using the CIBERSORTx immune deconvolution software. Two external clinical and molecular datasets from United States (n = 62) and Canada (n = 763) were used to evaluate the transferability of the gene-signature scores across ethnic populations. The abundance of 13 genes, including DLL1, are significantly associated with overall survival (All Cox regression P < 0.001). A gene-signature score was derived from the deep transcriptome, capable of indicating patients' subsequent tumor recurrence (Hazard Ratio [HR] 1.645, confidence interval [CI] 1.337-2.025, P < 0.001) and mortality (HR 2.720, CI 1.798-4.112, P < 0.001). After the adjustment of baseline clinical factors, the score remains indicative of recurrence-free survival (HR 1.604, CI 1.292-1.992, P < 0.001) and overall survival (HR 2.781, CI 1.762-4.390, P < 0.001). Patients stratified by this score manifest not only distinct prognosis but also different molecular characteristics: Notch signaling ligands and receptors are comparatively overexpressed in patients with poorer prognosis, while tumor infiltrating natural killer cells are more abundant in patients with better prognosis. Additionally, immunohistochemical staining showed the DLL1 protein, a major ligand in the Notch signaling pathway, and the NCAM1 protein, a representative biomarker of natural killer cells, are present in the surgical tissues of patients of four molecular subgroups, WNT, SHH, Group 3 and Group 4. NCAM1 RNA level is also positively associated with the mutation burden in tumor (P = 0.023). The gene-signature score is validated successfully in the Canadian cohort (P = 0.009) as well as its three molecular subgroups (SHH, Group 3 and Group 4; P = 0.047, 0.018 and 0.040 respectively). In conclusion, pediatric medullablastoma patients can be stratified by gene-signature scores with distinct prognosis and molecular characteristics. Ligands and receptors of the Notch signaling pathway are overexpressed in the patient stratum with poorer prognosis. Tumor infiltrating natural killer cells are more abundant in the patient stratum with better prognosis.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica , Células Asesinas Naturales/patología , Linfocitos Infiltrantes de Tumor/patología , Meduloblastoma/genética , Meduloblastoma/patología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Adolescente , Factores de Edad , Neoplasias Encefálicas/cirugía , Antígeno CD56/genética , Antígeno CD56/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Meduloblastoma/cirugía , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pronóstico , Análisis de Secuencia de ARN/métodos , Taiwán , Adulto Joven
10.
Nanomaterials (Basel) ; 11(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835903

RESUMEN

Plasmonic nanomaterials have been intensively explored for applications in biomedical detection and therapy for human sustainability. Herein, plasmonic gold nanoisland (NI) film (AuNIF) was fabricated onto a glass substrate by a facile seed-mediated growth approach. The structure of the tortuous gold NIs of the AuNIF was demonstrated by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Based on the ultraviolet-visible spectrum, the AuNIF revealed plasmonic absorption with maximum intensity at 624 nm. With the change to the surface topography created by the NIs, the capture efficiency of Escherichia coli (E. coli) by the AuNIF was significantly increased compared to that of the glass substrate. The AuNIF was applied as a surface-enhanced Raman scattering (SERS) substrate to enhance the Raman signal of E. coli. Moreover, the plasmonic AuNIF exhibited a superior photothermal effect under irradiation with simulated AM1.5 sunlight. For photothermal therapy, the AuNIF also displayed outstanding efficiency in the photothermal killing of E. coli. Using a combination of SERS detection and photothermal therapy, the AuNIF could be a promising platform for bacterial theranostics.

11.
Int J Nanomedicine ; 16: 5831-5867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475754

RESUMEN

Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.


Asunto(s)
Infecciones Bacterianas , Nanoestructuras , Antibacterianos/farmacología , Bacterias , Humanos , Estudios Prospectivos
12.
Diagnostics (Basel) ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34441396

RESUMEN

Predictive metabolic biomarkers for the recurrent luminal breast cancer (BC) with hormone receptor (HR)-positive and human epidermal growth factor receptor type 2 (HER2)-negative are lacking. High levels of O-GlcNAcylation (O-GlcNAc) and pyruvate kinase isoenzyme M2 (PKM2) are associated with malignancy in BC; however, the association with the recurrence risk remains unclear. We first conduct survival analysis by using the METABRIC dataset to assess the correlation of PKM2 expression with BC clinical outcomes. Next, patients with HR+/HER2- luminal BC were recruited for PKM2/O-GlcNAc testing. Logistic regression and receiver operating characteristic curve analysis were performed to evaluate the 10-year DFS predicted outcome. Survival analysis of the METABRIC dataset revealed that high expression of PKM2 was significantly associated with worse overall survival in luminal BC. The high expression of O-GlcNAc or PKM2 was a significant independent marker for poor 10-year DFS using immunohistochemical analysis. The PKM2 or O-GlcNAc status was a significant predictor of DFS, with the combination of PKM2-O-GlcNAc status and T stage greatly enhancing the predictive outcome potential. In summary, O-GlcNAc, PKM2, and T stage serve as good prognostic discriminators in HR+/HER2- luminal BC.

13.
Theranostics ; 11(8): 3624-3641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664852

RESUMEN

Arginine synthesis deficiency due to the suppressed expression of ASS1 (argininosuccinate synthetase 1) represents one of the most frequently occurring metabolic defects of tumor cells. Arginine-deprivation therapy has gained increasing attention in recent years. One challenge of ADI-PEG20 (pegylated ADI) therapy is the development of drug resistance caused by restoration of ASS1 expression and other factors. The goal of this work is to identify novel factors conferring therapy resistance. Methods: Multiple, independently derived ADI-resistant clones including derivatives of breast (MDA-MB-231 and BT-549) and prostate (PC3, CWR22Rv1, and DU145) cancer cells were developed. RNA-seq and RT-PCR were used to identify genes upregulated in the resistant clones. Unbiased genome-wide CRISPR/Cas9 knockout screening was used to identify genes whose absence confers sensitivity to these cells. shRNA and CRISPR/Cas9 knockout as well as overexpression approaches were used to validate the functions of the resistant genes both in vitro and in xenograft models. The signal pathways were verified by western blotting and cytokine release. Results: Based on unbiased CRISPR/Cas9 knockout screening and RNA-seq analyses of independently derived ADI-resistant (ADIR) clones, aberrant activation of the TREM1/CCL2 axis in addition to ASS1 expression was consistently identified as the resistant factors. Unlike ADIR, MDA-MB-231 overexpressing ASS1 cells achieved only moderate ADI resistance both in vitro and in vivo, and overexpression of ASS1 alone does not activate the TREM1/CCL2 axis. These data suggested that upregulation of TREM1 is an independent factor in the development of strong resistance, which is accompanied by activation of the AKT/mTOR/STAT3/CCL2 pathway and contributes to cell survival and overcoming the tumor suppressive effects of ASS1 overexpression. Importantly, knockdown of TREM1 or CCL2 significantly sensitized ADIR toward ADI. Similar results were obtained in BT-549 breast cancer cell line as well as castration-resistant prostate cancer cells. The present study sheds light on the detailed mechanisms of resistance to arginine-deprivation therapy and uncovers novel targets to overcome resistance. Conclusion: We uncovered TREM1/CCL2 activation, in addition to restored ASS1 expression, as a key pathway involved in full ADI-resistance in breast and prostate cancer models.


Asunto(s)
Arginina/deficiencia , Hidrolasas/farmacología , Polietilenglicoles/farmacología , Animales , Argininosuccinato Sintasa/deficiencia , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Sistemas CRISPR-Cas , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Técnicas de Inactivación de Genes , Humanos , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Terapia Molecular Dirigida , Medicina de Precisión , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Transducción de Señal , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/genética , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
14.
BMC Med Inform Decis Mak ; 21(1): 49, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568149

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disorder with systemic inflammation and may be induced by oxidative stress that affects an inflamed joint. Our objectives were to examine isotypes of autoantibodies against 4-hydroxy-2-nonenal (HNE) modifications in RA and associate them with increased levels of autoantibodies in RA patients. METHODS: Serum samples from 155 female patients [60 with RA, 35 with osteoarthritis (OA), and 60 healthy controls (HCs)] were obtained. Four novel differential HNE-modified peptide adducts, complement factor H (CFAH)1211-1230, haptoglobin (HPT)78-108, immunoglobulin (Ig) kappa chain C region (IGKC)2-19, and prothrombin (THRB)328-345, were re-analyzed using tandem mass spectrometric (MS/MS) spectra (ProteomeXchange: PXD004546) from RA patients vs. HCs. Further, we determined serum protein levels of CFAH, HPT, IGKC and THRB, HNE-protein adducts, and autoantibodies against unmodified and HNE-modified peptides. Significant correlations and odds ratios (ORs) were calculated. RESULTS: Levels of HPT in RA patients were greatly higher than the levels in HCs. Levels of HNE-protein adducts and autoantibodies in RA patients were significantly greater than those of HCs. IgM anti-HPT78-108 HNE, IgM anti-IGKC2-19, and IgM anti-IGKC2-19 HNE may be considered as diagnostic biomarkers for RA. Importantly, elevated levels of IgM anti-HPT78-108 HNE, IgM anti-IGKC2-19, and IgG anti-THRB328-345 were positively correlated with the disease activity score in 28 joints for C-reactive protein (DAS28-CRP). Further, the ORs of RA development through IgM anti-HPT78-108 HNE (OR 5.235, p < 0.001), IgM anti-IGKC2-19 (OR 12.655, p < 0.001), and IgG anti-THRB328-345 (OR 5.761, p < 0.001) showed an increased risk. Lastly, we incorporated three machine learning models to differentiate RA from HC and OA, and performed feature selection to determine discriminative features. Experimental results showed that our proposed method achieved an area under the receiver operating characteristic curve of 0.92, which demonstrated that our selected autoantibodies combined with machine learning can efficiently detect RA. CONCLUSIONS: This study discovered that some IgG- and IgM-NAAs and anti-HNE M-NAAs may be correlated with inflammation and disease activity in RA. Moreover, our findings suggested that IgM anti-HPT78-108 HNE, IgM anti-IGKC2-19, and IgG anti-THRB328-345 may play heavy roles in RA development.


Asunto(s)
Artritis Reumatoide , Autoanticuerpos , Aldehídos , Artritis Reumatoide/diagnóstico , Femenino , Humanos , Péptidos , Espectrometría de Masas en Tándem
15.
Mater Sci Eng C Mater Biol Appl ; 114: 111064, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32994013

RESUMEN

P-selectin overexpressed on activated endothelial cells and platelets is a new target for treatment of cancers and cardiovascular diseases such as atherosclerosis and thrombosis. In this study, depolymerized low molecular weight fucoidan (LMWF8775) and a thermolysin-hydrolyzed protamine peptide (TPP1880) were prepared. TPP1880 and LMWF8775 were able to form self-assembled complex nanoparticles (CNPs). The formation of TPP1880/LMWF8775 CNPs was characterized by Fourier-transform infrared spectra, circular dichroism spectra and isothermal titration calorimetry. The CNPs selectively targeted PMA-stimulated, inflamed endothelial cells (HUVECs) with high expression of P-selectin. Gd-DTPA MRI contrast agent was successfully loaded in the CNPs with better T1 relaxivity and selectively accumulated in the activated HUVECs with increased MRI intensity and reduced cytotoxicity as compared to free Gd-DTPA. Our results suggest that the TPP1880/LMWF8775 CNPs may have potential in future for early diagnosis of cardiovascular diseases and cancers in which the endothelium is inflamed or activated.


Asunto(s)
Gadolinio DTPA , Nanopartículas , Medios de Contraste , Células Endoteliales , Endotelio , Imagen por Resonancia Magnética , Péptidos , Polisacáridos
16.
Sci Rep ; 10(1): 9350, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32494003

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Cancers (Basel) ; 12(3)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235770

RESUMEN

Atypical teratoid rhabdoid tumors (ATRTs) are among the most malignant brain tumors in early childhood and remain incurable. Myc-ATRT is driven by the Myc oncogene, which directly controls the intracellular protein synthesis rate. Proteasome inhibitor bortezomib (BTZ) was approved by the Food and Drug Administration as a primary treatment for multiple myeloma. This study aimed to determine whether the upregulation of protein synthesis and proteasome degradation in Myc-ATRTs increases tumor cell sensitivity to BTZ. We performed differential gene expression and gene set enrichment analysis on matched primary and recurrent patient-derived xenograft (PDX) samples from an infant with ATRT. Concomitant upregulation of the Myc pathway, protein synthesis and proteasome degradation were identified in recurrent ATRTs. Additionally, we found the proteasome-encoding genes were highly expressed in ATRTs compared with in normal brain tissues, correlated with the malignancy of tumor cells and were essential for tumor cell survival. BTZ inhibited proliferation and induced apoptosis through the accumulation of p53 in three human Myc-ATRT cell lines (PDX-derived tumor cell line Re1-P6, BT-12 and CHLA-266). Furthermore, BTZ inhibited tumor growth and prolonged survival in Myc-ATRT orthotopic xenograft mice. Our findings suggest that BTZ may be a promising targeted therapy for Myc-ATRTs.

18.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168907

RESUMEN

In 2016, a project was initiated in Taiwan to adopt molecular diagnosis of childhood medulloblastoma (MB). In this study, we aimed to identify a molecular-clinical correlation and somatic mutation for exploring risk-adapted treatment, drug targets, and potential genetic predisposition. In total, 52 frozen tumor tissues of childhood MBs were collected. RNA sequencing (RNA-Seq) and DNA methylation array data were generated. Molecular subgrouping and clinical correlation analysis were performed. An adjusted Heidelberg risk stratification scheme was defined for updated clinical risk stratification. We selected 51 genes for somatic variant calling using RNA-Seq data. Relevant clinical findings were defined. Potential drug targets and genetic predispositions were explored. Four core molecular subgroups (WNT, SHH, Group 3, and Group 4) were identified. Genetic backgrounds of metastasis at diagnosis and extent of tumor resection were observed. The adjusted Heidelberg scheme showed its applicability. Potential drug targets were detected in the pathways of DNA damage response. Among the 10 patients with SHH MBs analyzed using whole exome sequencing studies, five patients exhibited potential genetic predispositions and four patients had relevant germline mutations. The findings of this study provide valuable information for updated risk adapted treatment and personalized care of childhood MBs in our cohort series and in Taiwan.

19.
Sensors (Basel) ; 20(4)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075261

RESUMEN

We design and compare the splitting ratio wavelength flatness of directional coupler (DC), Mach-Zehnder directional coupler (MZDC), and tandem MZDC. All coupler responses are analyzed, and tandem MZDC performance is the best in the wavelength insensitivity compared with the other two. An MZDC with any coupling ratio could be utilized to match the maximum flatness in a 40-nm wavelength range. To extend a broad flatness range, the tandem MZDC is proposed and still follows the Mach Zehnder structure taking two MZDCs as couplers connected through a decoupled region. Unlike DC, MZDC with the flat wavelength response has a non-linear output phase. Hence, using two wavelength-insensitive MZDCs as the coupling function in a tandem MZDC could demonstrate a more extensive decoupled phase term to maximize the flat wavelength response. The tandem MZDC theoretically demonstrates the splitting ratio with 100-nm flatness in the wavelength range from 1250 nm to 1350 nm. Finally, a point spread function through the tandem MZDC shows a 24-dB signal-to-noise ratio improvement in optical coherence tomography applications.

20.
Commun Biol ; 2: 389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667363

RESUMEN

Billions of people have obesity-related metabolic syndromes such as diabetes and hyperlipidemia. Promoting the browning of white adipose tissue has been suggested as a potential strategy, but a drug still needs to be identified. Here, genetic deletion of activating transcription factor 3 (ATF3-/- ) in mice under a high-fat diet (HFD) resulted in obesity and insulin resistance, which was abrogated by virus-mediated ATF3 restoration. ST32da, a synthetic ATF3 inducer isolated from Salvia miltiorrhiza, promoted ATF3 expression to downregulate adipokine genes and induce adipocyte browning by suppressing the carbohydrate-responsive element-binding protein-stearoyl-CoA desaturase-1 axis. Furthermore, ST32da increased white adipose tissue browning and reduced lipogenesis in HFD-induced obese mice. The anti-obesity efficacy of oral ST32da administration was similar to that of the clinical drug orlistat. Our study identified the ATF3 inducer ST32da as a promising therapeutic drug for treating diet-induced obesity and related metabolic disorders.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Adipocitos Marrones/metabolismo , Obesidad/metabolismo , Células 3T3-L1 , Factor de Transcripción Activador 3/deficiencia , Factor de Transcripción Activador 3/genética , Adipocitos Marrones/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Fármacos Antiobesidad/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Temperatura Corporal/fisiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Resistencia a la Insulina , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/prevención & control , Orlistat/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Salvia miltiorrhiza/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...