Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nucleic Acids Res ; 52(16): 9695-9709, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39082275

RESUMEN

Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.


Asunto(s)
Recombinasa Rad51 , RecQ Helicasas , Reparación del ADN por Recombinación , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Telómero/metabolismo , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Humanos , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
2.
Clin Pharmacol Ther ; 116(4): 902-913, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38973127

RESUMEN

The 2022 United States Food and Drug Administration (US FDA) draft guidance on diversity plan (DP), which will be implemented through the Diversity Action Plans by December 2025, under the 21st Century Cures Act, marks a pivotal effort by the FDA to ensure that registrational studies adequately reflect the target patient populations based on diversity in demographics and baseline characteristics. This white paper represents the culminated efforts of the International Consortium of Quality and Innovation (IQ) Diversity and Inclusion (D&I) Working Group (WG) to assess the implementation of the draft FDA guidance by members of the IQ consortium in the discipline of clinical pharmacology (CP). This article describes current practices in the industry and emphasizes the tools and techniques of quantitative pharmacology that can be applied to support the inclusion of a diverse population during global drug development, to support diversity and inclusion of underrepresented patient populations, in multiregional clinical trials (MRCTs). It outlines strategic and technical recommendations to integrate demographics, including age, sex/gender, race/ethnicity, and comorbidities, in multiregional phase III registrational studies, through the application of quantitative pharmacology. Finally, this article discusses the challenges faced during global drug development, which may otherwise limit the enrollment of a broader, potentially diverse population in registrational trials. Based on the outcomes of the IQ survey that provided the current awareness of diversity planning, it is envisioned that in the future, industry efforts in the inclusion of previously underrepresented populations during global drug development will culminate in drug labels that apply to the intended patient populations at the time of new drug application or biologics license application rather than through post-marketing requirements.


Asunto(s)
Desarrollo de Medicamentos , Industria Farmacéutica , Farmacología Clínica , United States Food and Drug Administration , Humanos , Desarrollo de Medicamentos/legislación & jurisprudencia , Desarrollo de Medicamentos/métodos , Estados Unidos , Ensayos Clínicos como Asunto/legislación & jurisprudencia , Diversidad Cultural
3.
Bioessays ; 46(2): e2300184, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38047499

RESUMEN

Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.


Asunto(s)
Membrana Nuclear , Telómero , Animales , Humanos , Membrana Nuclear/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , ADN/metabolismo , Inestabilidad Genómica , Mamíferos/genética
4.
Nucleic Acids Res ; 51(17): 9227-9247, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37560909

RESUMEN

Malignant cancers must activate telomere maintenance mechanisms to achieve replicative immortality. Mutations in the human Protection of Telomeres 1 (POT1) gene are frequently detected in cancers with abnormally long telomeres, suggesting that the loss of POT1 function disrupts the regulation of telomere length homeostasis to promote telomere elongation. However, our understanding of the mechanisms leading to elongated telomeres remains incomplete. The mouse genome encodes two POT1 proteins, POT1a and POT1b possessing separation of hPOT1 functions. We performed serial transplantation of Pot1b-/- sarcomas to better understand the role of POT1b in regulating telomere length maintenance. While early-generation Pot1b-/- sarcomas initially possessed shortened telomeres, late-generation Pot1b-/- cells display markedly hyper-elongated telomeres that were recognized as damaged DNA by the Replication Protein A (RPA) complex. The RPA-ATR-dependent DNA damage response at telomeres promotes telomerase recruitment to facilitate telomere hyper-elongation. POT1b, but not POT1a, was able to unfold G-quadruplex present in hyper-elongated telomeres to repress the DNA damage response. Our findings demonstrate that the repression of the RPA-ATR DDR is conserved between POT1b and human POT1, suggesting that similar mechanisms may underly the phenotypes observed in human cancers harboring human POT1 mutations.


Asunto(s)
Sarcoma , Complejo Shelterina , Ratones , Humanos , Animales , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Telómero/metabolismo , Daño del ADN , Proteína de Replicación A/metabolismo , Proteínas de Unión al ADN/genética
6.
Nat Commun ; 14(1): 2144, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059728

RESUMEN

Double-strand breaks (DSBs) due to genotoxic stress represent potential threats to genome stability. Dysfunctional telomeres are recognized as DSBs and are repaired by distinct DNA repair mechanisms. RAP1 and TRF2 are telomere binding proteins essential to protect telomeres from engaging in homology directed repair (HDR), but how this occurs remains unclear. In this study, we examined how the basic domain of TRF2 (TRF2B) and RAP1 cooperate to repress HDR at telomeres. Telomeres lacking TRF2B and RAP1 cluster into structures termed ultrabright telomeres (UTs). HDR factors localize to UTs, and UT formation is abolished by RNaseH1, DDX21 and ADAR1p110, suggesting that they contain DNA-RNA hybrids. Interaction between the BRCT domain of RAP1 and KU70/KU80 is also required to repress UT formation. Expressing TRF2∆B in Rap1-/- cells resulted in aberrant lamin A localization in the nuclear envelope and dramatically increased UT formation. Expressing lamin A phosphomimetic mutants induced nuclear envelope rupturing and aberrant HDR-mediated UT formation. Our results highlight the importance of shelterin and proteins in the nuclear envelope in repressing aberrant telomere-telomere recombination to maintain telomere homeostasis.


Asunto(s)
Membrana Nuclear , Proteína 2 de Unión a Repeticiones Teloméricas , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
7.
Transpl Infect Dis ; 24(5): e13971, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36254507

RESUMEN

BACKGROUND: Antimicrobial stewardship in solid organ transplant (SOT) recipients is important to prevent antimicrobial-associated complications, but traditional stewardship principles are challenging to implement for SOT patients. Newer methodologies to optimize stewardship efforts are needed. METHODS: PubMed was searched using the keywords "cell free DNA," "metagenomic sequencing," "host biomarker," "antimicrobial stewardship," and "SOT." RESULTS: Metagenomic sequencing of cell free DNA has the potential to be a stewardship tool for SOT recipients. Various studies have shown its use for antimicrobial de-escalation and duration shortening. Host gene expression profiles can differentiate between infectious and noninfectious syndromes and may assist in stewardship efforts. However, information in immunocompromised hosts is conflicting. CONCLUSION: Microbial cell free DNA sequencing and host gene expression profiling show promise as stewardship tools in SOT recipients. Future studies on antimicrobial stewardship in SOT recipients should focus on their clinical use and feasibility.


Asunto(s)
Antiinfecciosos , Programas de Optimización del Uso de los Antimicrobianos , Ácidos Nucleicos Libres de Células , Trasplante de Órganos , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Programas de Optimización del Uso de los Antimicrobianos/métodos , Biomarcadores , Humanos , Trasplante de Órganos/efectos adversos , Trasplante de Órganos/métodos , Receptores de Trasplantes
8.
Transpl Infect Dis ; 24(3): e13822, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35253965

RESUMEN

BACKGROUND: Mycoplasma hominis can cause significant infections after solid organ transplantation (SOT). Treatment should be guided by susceptibility testing, but conventional lab methods are laborious with prolonged turnaround time (TAT). This case series compares the phenotypic and genotypic susceptibility profiles of M. hominis isolates identified from SOT patients. METHODS: This is a single-center retrospective study evaluating SOT recipients with confirmed M. hominis infections. Patients' demographic, clinical, microbiological, and radiographic data were collected. Culture of M. hominis isolates was performed according to current Clinical and Laboratory Standards Institute guidelines. Phenotypic susceptibility testing was performed by University of Alabama Diagnostic Mycoplasma Laboratory. Whole genome sequencing (WGS) was performed followed by bioinformatic analysis of known genetic determinants of resistance. RESULTS: Seven SOT recipients with M. hominis infections were identified. Two out of seven (28.5%) patients had resistance detected by phenotypic susceptibility testing (Case 5 to levofloxacin and Case 7 to tetracycline). Genomic analyses confirmed the presence of mutations in the parC and parE topoisomerase genes at positions conferring to fluoroquinolone resistance in the isolate from Case 5, while the tetracycline-resistant isolate from Case 7 harbored the tetM gene. The median TAT from the date of specimen collection was 24 days for phenotypic susceptibility testing and 14 days for genotypic susceptibility testing. All seven patients received antimicrobials directed toward M. hominis and recovered with complete resolution of infection. CONCLUSIONS: WGS may offer a novel and more rapid methodology for M. hominis susceptibility testing to help optimize antimicrobial usage, but more data are needed.


Asunto(s)
Antiinfecciosos , Infecciones por Mycoplasma , Trasplante de Órganos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycoplasma/diagnóstico , Infecciones por Mycoplasma/tratamiento farmacológico , Infecciones por Mycoplasma/microbiología , Mycoplasma hominis/genética , Trasplante de Órganos/efectos adversos , Estudios Retrospectivos , Tetraciclina/uso terapéutico , Resultado del Tratamiento
9.
Nat Commun ; 12(1): 5514, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535663

RESUMEN

Human shelterin components POT1 and TPP1 form a stable heterodimer that protects telomere ends from ATR-dependent DNA damage responses and regulates telomerase-dependent telomere extension. Mice possess two functionally distinct POT1 proteins. POT1a represses ATR/CHK1 DNA damage responses and the alternative non-homologous end-joining DNA repair pathway while POT1b regulates C-strand resection and recruits the CTC1-STN1-TEN1 (CST) complex to telomeres to mediate C-strand fill-in synthesis. Whether POT1a and POT1b are involved in regulating the length of the telomeric G-strand is unclear. Here we demonstrate that POT1b, independent of its CST function, enhances recruitment of telomerase to telomeres through three amino acids in its TPP1 interacting C-terminus. POT1b thus coordinates the synthesis of both telomeric G- and C-strands. In contrast, POT1a negatively regulates telomere length by inhibiting telomerase recruitment to telomeres. The identification of unique amino acids between POT1a and POT1b helps us understand mechanistically how human POT1 switches between end protective functions and promoting telomerase recruitment.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Análisis Mutacional de ADN , Ratones , Unión Proteica , Recombinasa Rad51/metabolismo , Sarcoma/patología
10.
Open Forum Infect Dis ; 8(8): ofab326, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34377725

RESUMEN

Measles is a worldwide viral disease that can cause fatal complications in immunocompromised hosts such as hematopoietic cell transplant (HCT) recipients. The live attenuated measles, mumps, and rubella (MMR) vaccine is generally contraindicated post-HCT due to the risk for vaccine-associated measles. This, combined with decreasing vaccination rates due to vaccine hesitancy and the coronavirus disease 2019 pandemic, raises significant concerns for a measles resurgence that could portend devastating consequences for immunocompromised hosts. Multiple guidelines have included criteria to determine which HCT recipients can safely receive the MMR vaccine. Here, we report a case of vaccine-associated measles in a HCT recipient who met guideline-recommended criteria for MMR vaccination. The objective of this article is to query these criteria, highlight the importance of MMR vaccination, and comprehensively review the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA