Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (196)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37335101

RESUMEN

Heart failure remains the leading cause of death worldwide, creating a pressing need for better preclinical models of the human heart. Tissue engineering is crucial for basic science cardiac research; in vitro human cell culture eliminates the interspecies differences of animal models, while a more tissue-like 3D environment (e.g., with extracellular matrix and heterocellular coupling) simulates in vivo conditions to a greater extent than traditional two-dimensional culture on plastic Petri dishes. However, each model system requires specialized equipment, for example, custom-designed bioreactors and functional assessment devices. Additionally, these protocols are often complicated, labor-intensive, and plagued by the failure of the small, delicate tissues. This paper describes a process for generating a robust human engineered cardiac tissue (hECT) model system using induced pluripotent stem-cell-derived cardiomyocytes for the longitudinal measurement of tissue function. Six hECTs with linear strip geometry are cultured in parallel, with each hECT suspended from a pair of force-sensing polydimethylsiloxane (PDMS) posts attached to PDMS racks. Each post is capped with a black PDMS stable post tracker (SPoT), a new feature that improves the ease of use, throughput, tissue retention, and data quality. The shape allows for the reliable optical tracking of post deflections, yielding improved twitch force tracings with absolute active and passive tension. The cap geometry eliminates tissue failure due to hECTs slipping off the posts, and as they involve a second step after PDMS rack fabrication, the SPoTs can be added to existing PDMS post-based designs without major changes to the bioreactor fabrication process. The system is used to demonstrate the importance of measuring hECT function at physiological temperatures and shows stable tissue function during data acquisition. In summary, we describe a state-of-the-art model system that reproduces key physiological conditions to advance the biofidelity, efficiency, and rigor of engineered cardiac tissues for in vitro applications.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Animales , Humanos , Ingeniería de Tejidos/métodos , Contracción Miocárdica , Miocitos Cardíacos , Reactores Biológicos
2.
Dev Cell ; 41(4): 392-407.e6, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28535374

RESUMEN

Mesodermal cells signal to neighboring epithelial cells to modulate their proliferation in both normal and disease states. We adapted a Caenorhabditis elegans organogenesis model to enable a genome-wide mesodermal-specific RNAi screen and discovered 39 factors in mesodermal cells that suppress the proliferation of adjacent Ras pathway-sensitized epithelial cells. These candidates encode components of protein complexes and signaling pathways that converge on the control of chromatin dynamics, cytoplasmic polyadenylation, and translation. Stromal fibroblast-specific deletion of mouse orthologs of several candidates resulted in the hyper-proliferation of mammary gland epithelium. Furthermore, a 33-gene signature of human orthologs was selectively enriched in the tumor stroma of breast cancer patients, and depletion of these factors from normal human breast fibroblasts increased proliferation of co-cultured breast cancer cells. This cross-species approach identified unanticipated regulatory networks in mesodermal cells with growth-suppressive function, exposing the conserved and selective nature of mesodermal-epithelial communication in development and cancer.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/metabolismo , Redes Reguladoras de Genes , Proteínas ras/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linaje de la Célula , Proliferación Celular , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Perfilación de la Expresión Génica , Genoma , Humanos , Glándulas Mamarias Animales/citología , Mesodermo/metabolismo , Ratones , Mutación/genética , Proteínas Nucleares , Especificidad de Órganos , Fenotipo , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Células del Estroma/citología , Células del Estroma/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA