Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39335166

RESUMEN

BACKGROUND: Okanin, a flavonoid compound derived from Bidens pilosa L., has garnered attention for its anti-inflammatory properties. Although Bidens pilosa is commonly used in healthcare products and functional foods, the anticancer potential of okanin, particularly in oral cancer, remains underexplored. This study aims to investigate the effects of okanin on oral cancer cell lines and its potential as a therapeutic agent. METHODS: The study involved assessing the cytotoxic effects of okanin on oral cancer cell lines SAS, SCC25, HSC3, and OEC-M1. The IC50 values were determined using methylene blue assays, and the clonogenic capacity was evaluated through colony formation assays. Flow cytometry was used to analyze cell cycle progression and apoptosis. Caspase-3/7 activity assays and annexin V/7-AAD staining confirmed the induction of apoptosis and pyroptosis. In vivo efficacy was assessed using a SAS xenograft model, and immunohistochemical analysis of xenograft tissue was performed to examine pyroptosis-related markers. RESULTS: Okanin exhibited potent cytotoxic effects with IC50 values of 12.0 ± 0.8, 58.9 ± 18.7, 18.1 ± 5.3, and 43.2 ± 6.2 µM in SAS, SCC25, HSC3, and OEC-M1 cells, respectively. It caused dose- and time-dependent reductions in cell viability and significantly impaired clonogenic capacity. Flow cytometry revealed G2/M cell cycle arrest and increased sub-G1 population, indicating cell cycle disruption and death. Okanin induced both apoptosis and pyroptosis, as confirmed by caspase-3/7 activity and annexin V/7-AAD staining. In vivo, okanin reduced tumor growth and involved pyroptosis-related markers such as CASP1, GSDMC, GSDMD, and GSDME. CONCLUSIONS: Okanin demonstrates significant anticancer potential, particularly in oral cancer, by inducing both apoptosis and pyroptosis. Its efficacy in reducing tumor growth in vivo further supports its potential as a novel therapeutic option. Further mechanistic studies are needed to elucidate the pathways involved in okanin-mediated cell death and to explore its clinical applications.

2.
Biomedicines ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37893043

RESUMEN

The dysregulated expression of cyclin genes can lead to the uncontrolled proliferation of cancer cells. Histone demethylase Jumonji-C domain-containing protein 5 (KDM8, JMJD5) and cyclin A1 (CCNA1) are pivotal in cell cycle progression. A promising candidate for augmenting cancer treatment is Allyl isothiocyanate (AITC), a natural dietary chemotherapeutic and epigenetic modulator. This study aimed to investigate AITC's impact on the KDM8/CCNA1 axis to elucidate its role in oral squamous cell carcinoma (OSCC) tumorigenesis. The expression of KDM8 and CCNA1 was assessed using a tissue microarray (TMA) immunohistochemistry (IHC) assay. In vitro experiments with OSCC cell lines and in vivo experiments with patient-derived tumor xenograft (PDTX) and SAS subcutaneous xenograft tumor models were conducted to explore AITC's effects on their expression and cell proliferation. The results showed elevated KDM8 and CCNA1 levels in the OSCC patient samples. AITC exhibited inhibitory effects on OSCC tumor growth in vitro and in vivo. Additionally, AITC downregulated KDM8 and CCNA1 expression while inducing histone H3K36me2 expression in oral cancer cells. These findings underscore AITC's remarkable anticancer properties against oral cancer, highlighting its potential as a therapeutic option for oral cancer treatment by disrupting the cell cycle by targeting the KDM8/CCNA1 axis.

3.
J Clin Med ; 10(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34501431

RESUMEN

Finite element analysis (FEA) has always been an important tool in studying the influences of stress and deformation due to various loads on implants to the surrounding jaws. This study assessed the influence of two different types of dental implant model on stress dissipation in adjoining jaws and on the implant itself by utilizing FEA. This analysis aimed to examine the effects of increasing the number of fences along the implant and to compare the resulting stress distribution and deformation with surrounding bones. When a vertical force of 100 N was applied, the largest displacements found in the three-fenced and single-fenced models were 1.7469 and 2.5267, respectively, showing a drop of 30.8623%. The maximum stress found in the three-fenced and one-fenced models was 13.518 and 22.365 MPa, respectively, showing a drop of 39.557%. Moreover, when an oblique force at 35° was applied, a significant increase in deformation and stress was observed. However, the three-fenced model still had less stress and deformation compared with the single-fenced model. The FEA results suggested that as the number of fences increases, the stress dissipation increases, whereas deformation decreases considerably.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA