Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(3): 109115, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384834

RESUMEN

As a flagship species of biodiversity conservation globally, the giant panda has seasonal migration to cope with seasonal changes in available resources. Here, we have mapped the spatial distribution of multi-seasonal habitats of the giant panda across the Baishuijiang reserve in China. Results show that the spatial patterns are different in different seasons, generally, large patches are observed in the western part, while staggered clusters occur in the middle and eastern parts. That is, suitable habitats for giant pandas are mostly distributed in the west part. More than 75% of the predicted suitable habitats are within the core zone of the reserve year-round, indicating the core zone essentially meet giant panda's ecological needs, although this range could potentially be expanded. This study provides valuable insights into the spatiotemporal migration patterns of endangered species and helps to guide conservation planning.

2.
PeerJ ; 9: e10965, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828911

RESUMEN

Teff (Eragrostis tef (Zucc.) Trotter) is a staple, ancient food crop in Ethiopia. Its growth is affected by climate change, so it is essential to understand climatic effects on its habitat suitability in order to design countermeasures to ensure food security. Based on the four Representative Concentration Pathway emission scenarios (i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5) set by the Intergovernmental Panel on Climate Change (IPCC), we predicted the potential distribution of teff under current and future scenarios using a maximum entropy model (Maxent). Eleven variables were selected out of 19, according to correlation analysis combined with their contribution rates to the distribution. Simulated accuracy results validated by the area under the curve (AUC) had strong predictability with values of 0.83-0.85 for current and RCP scenarios. Our results demonstrated that mean temperature in the coldest season, precipitation seasonality, precipitation in the cold season and slope are the dominant factors driving potential teff distribution. Proportions of suitable teff area, relative to the total study area were 58% in current climate condition, 58.8% in RCP2.6, 57.6% in RCP4.5, 59.2% in RCP6.0, and 57.4% in RCP8.5, respectively. We found that warmer conditions are correlated with decreased land suitability. As expected, bioclimatic variables related to temperature and precipitation were the best predictors for teff suitability. Additionally, there were geographic shifts in land suitability, which need to be accounted for when assessing overall susceptibility to climate change. The ability to adapt to climate change will be critical for Ethiopia's agricultural strategy and food security. A robust climate model is necessary for developing primary adaptive strategies and policy to minimize the harmful impact of climate change on teff.

4.
PLoS One ; 13(11): e0204130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30383817

RESUMEN

Knowledge about soil nitrogen (N) and phosphorus (P) concentrations, stocks, and stoichiometric ratios is crucial for understanding the biogeochemical cycles and ecosystem function in arid mountainous forests. However, the corresponding information is scarce, particularly in arid mountainous forests. To fill this gap, we investigated the depth and elevational patterns of the soil N and P concentrations and the N: P ratios in a Picea schrenkiana forest using data from soil profiles collected during 2012-2017. Our results showed that the soil N and P concentrations and the N: P ratios varied from 0.15 g kg-1 to 0.56 g kg-1 (average of 0.31 g kg-1), from 0.09 g kg-1 to 0.16 g kg-1 (average of 0.12 g kg-1), and from 2.42 g kg-1 to 4.36 g kg-1 (average of 3.42 g kg-1), respectively; additionally, values significantly and linearly decreased with soil depth. We did not observe a significant variation in the soil N and P concentrations and the N: P ratios with the elevational gradient. In contrast, our results revealed that the mean annual temperature and mean annual precipitation exhibited a more significant influence on the soil N and P concentrations and the N: P ratios than did elevation. This finding indicated that climatic variables might have a more direct impact on soil nutrient status than elevation. The observed relationship among the soil N and P concentrations and the N: P ratios demonstrated that the soil N was closely coupled with the soil P in the P. schrenkiana forest.


Asunto(s)
Nitrógeno/análisis , Fósforo/análisis , Picea/química , Suelo/química , Árboles/química , Clima , Bosques , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...