Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuroscience Bulletin ; (6): 50-64, 2024.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1010668

RESUMEN

The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.


Asunto(s)
Niño , Humanos , Entrenamiento Cognitivo , Imagen por Resonancia Magnética , Encéfalo , Mapeo Encefálico , Corteza Motora
2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264836

RESUMEN

Vaccination is essential for controlling the coronavirus disease (COVID-19) pandemic. An effective time-course strategy for the allocation of COVID-19 vaccines is crucial given that the global vaccine supply will still be limited in some countries/regions in the near future and that mutant strains have emerged and will continue to spread worldwide. Both asymptomatic and symptomatic transmission have played major roles in the COVID-19 pandemic, which can only be properly described as a typical non-Markovian process. However, the prioritization of vaccines in the non-Markovian framework still lacks sufficient research, and the underlying mechanism of the time-course vaccine allocation optimization has not yet been uncovered. In this paper, based on an age-stratified compartmental model calibrated through clinical and epidemiological data, we propose optimal vaccination strategies (OVS) through steady-state prediction in the non-Markovian framework. This OVS outperforms other empirical vaccine prioritization approaches in minimizing cumulative infections, cumulative deaths, or years of life lost caused by the pandemic. We found that there exists a fast decline in the prevention efficiency of vaccination if vaccines are solely administered to a selected age group, which indicates that the widely adopted strategy to continuously vaccinate high-risk group is not optimal. Through mathematical analysis of the model, we reveal that dynamic vaccine allocations to combinations of different age groups is necessary to achieve optimal vaccine prioritization. Our work not only provides meaningful references for vaccination in countries currently lacking vaccines and for vaccine allocation strategies to prevent mutant strains in the future, but also reveals the mechanism of dynamic vaccine allocation optimization, forming a theoretical and modelling framework empirically applicable to the optimal time-course prioritization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA