Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 4231-4241, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38151015

RESUMEN

Drawing inspiration from origami structures, a pressure sensor was developed with unique interconnection scaling at its creases crafted on a conductive paper substrate, paving the way for advanced wearable technology. Two screen-printed conductive paper substrates were combined face-to-face, and specific folds were introduced to optimize the sensor structure. The Electrical Contact Resistance (ECR) was systematically analyzed across different fold numbers and crease gaps, revealing a notable trade-off: while increasing the number of folds expanded the sensing area, it also influenced the ECR, reaching a performance plateau. Strategic modifications in the sensor's design, including refining interconnections at the crease, enhanced its sensitivity and stability, culminating in a remarkable sensitivity of 3.75 kPa-1 at subtle pressure levels (0-0.05 kPa). This sensor's real-world applications proved to be transformative, from detecting bruxism and aiding in neck posture correction to remotely sensing trigger finger locking phenomena, highlighting its potential as a pivotal tool in upcoming medical diagnostics and treatments.


Asunto(s)
Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Impedancia Eléctrica
2.
ACS Nano ; 17(19): 19033-19051, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37737568

RESUMEN

Selective autophagy is a defense mechanism by which foreign pathogens and abnormal substances are processed to maintain cellular homeostasis. Sequestosome 1 (SQSTM1)/p62, a vital selective autophagy receptor, recruits ubiquitinated cargo to form autophagosomes for lysosomal degradation. Nab-PTX is an albumin-bound paclitaxel nanoparticle used in clinical cancer therapy. However, the role of SQSTM1 in regulating the delivery and efficacy of nanodrugs remains unclear. Here we showed that SQSTM1 plays a crucial role in Nab-PTX drug delivery and efficacy in human lung and colorectal cancers. Nab-PTX induces SQSTM1 phosphorylation at Ser403, which facilitates its incorporation into the selective autophagy of nanoparticles, known as nanoparticulophagy. Nab-PTX increased LC3-II protein expression, which triggered autophagosome formation. SQSTM1 enhanced Nab-PTX recognition to form autophagosomes, which were delivered to lysosomes for albumin degradation, thereby releasing PTX to induce mitotic catastrophe and apoptosis. Knockout of SQSTM1 downregulated Nab-PTX-induced mitotic catastrophe, apoptosis, and tumor inhibition in vitro and in vivo and inhibited Nab-PTX-induced caspase 3 activation via a p53-independent pathway. Ectopic expression of SQSTM1 by transfection of an SQSTM1-GFP vector restored the drug efficacy of Nab-PTX. Importantly, SQSTM1 is highly expressed in advanced lung and colorectal tumors and is associated with poor overall survival in clinical patients. Targeting SQSTM1 may provide an important strategy to improve nanodrug efficacy in clinical cancer therapy. This study demonstrates the enhanced efficacy of Nab-PTX for human lung and colorectal cancers via SQSTM1-mediated nanodrug delivery.

3.
Inflamm Regen ; 43(1): 13, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797799

RESUMEN

BACKGROUND: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

4.
Anticancer Agents Med Chem ; 23(11): 1309-1319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815658

RESUMEN

BACKGROUND: Lung cancer has become one of the leading causes of cancer incidence and mortality worldwide. Non-small cell lung carcinoma (NSCLC) is the most common type among all lung cancer cases. NSCLC patients contained high levels of activating epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion, L858R and T790M. Osimertinib, a third-generation of EGFR tyrosine kinase inhibitor (EGFR-TKI), has therapeutic efficacy on the EGFR-T790M mutation of NSCLC patients; however, treatment of osimertinib still can induce drug resistance in lung cancer patients. Therefore, investigation of the drug resistance mechanisms of osimertinib will provide novel strategies for lung cancer therapy. METHODS: The H1975OR osimertinib-resistant cell line was established by prolonged exposure with osimertinib derived from the H1975 cells. The cell proliferation ability was evaluated by the cell viability and cell growth assays. The cell migration ability was determined by the Boyden chamber assays. The differential gene expression profile was analyzed by genome-wide RNA sequencing. The protein expression and location were analyzed by western blot and confocal microscopy. RESULTS: In this study, we established the osimertinib-resistant H1975 (T790M/L858R) cancer cells, named the H1975OR cell line. The cell growth ability was decreased in the H1975OR cells by comparison with the H1975 parental cells. Conversely, the cell migration ability was elevated in the H1975OR cells. We found the differential gene expression profile of cell proliferation and migration pathways between the H1975OR and H1975 parental cells. Interestingly, the protein levels of phospho-EGFR, PD-L1, E-cadherin and ß-catenin were decreased, but the survivin and N-cadherin proteins were increased in the H1975OR drug-resistant cells. CONCLUSION: Osimertinib induces the opposite effect of proliferation and migration in the drug resistance of EGFRT790M lung cancer cells. We suggest that differential gene and protein expressions in the cell proliferation and migration pathways may mediate the drug resistance of osimertinib in lung cancer cells. Understanding the molecular drugresistant mechanisms of proliferation and migration pathways of osimertinib may provide novel targets and strategies for the clinical treatment of EGFR-TKIs in lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Mutación , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Compuestos de Anilina/farmacología , Proliferación Celular
5.
Biochem Pharmacol ; 206: 115289, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36241092

RESUMEN

Colorectal cancer (CRC) is a leading cause and mortality worldwide. Aurora A and haspin kinases act pivotal roles in mitotic progression. However, the blockage of Aurora A and Haspin for CRC therapy is still unclear. Here we show that the Haspin and p-H3T3 protein levels were highly expressed in CRC tumor tissues of clinical patients. Overexpression of Haspin increased the protein levels of p-H3T3 and survivin in human CRC cells; conversely, the protein levels of p-H3T3 and survivin were decreased by the Haspin gene knockdown. Moreover, the gene knockdown of Aurora A induced abnormal chromosome segregation, mitotic catastrophe, and cell growth inhibition. Combined targeted by co-treatment of CHR6494, a Haspin inhibitor, and MLN8237, an Aurora A inhibitor, enhanced apoptosis and CRC tumor inhibition. MLN8237 and CHR6494 induced abnormal chromosome segregation and mitotic catastrophe. Meanwhile, MLN8237 and CHR6494 inhibited survivin protein levels but conversely induced p53 protein expression. Ectopic survivin expression by transfection with a survivin-expressed vector resisted the cell death in the MLN8237- and CHR6494-treated cells. In contrast, the existence of functional p53 increased the apoptotic levels by treatment with MLN8237 and CHR6494. Co-treatment of CHR6494 and MLN8237 enhanced the blockage of human CRC xenograft tumors in nude mice. Taken together, co-inhibition of Aurora A and Haspin enhances survivin inhibition, p53 pathway induction, mitotic catastrophe, apoptosis and tumor inhibition that may provide a potential strategy for CRC therapy.


Asunto(s)
Aurora Quinasa A , Neoplasias Colorrectales , Survivin , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Apoptosis , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Survivin/genética , Survivin/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética
6.
Pharmaceutics ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36678740

RESUMEN

Nanoprobes provide advantages for real-time monitoring of tumor markers and tumorigenesis during cancer progression and development. Epidermal growth factor receptor (EGFR) is a key protein that plays crucial roles for tumorigenesis and cancer therapy of lung cancers. Here, we show a carbon-based nanoprobe, nanodiamond (ND), which can be applied for targeting EGFR and monitoring tumorigenesis of human lung cancer cells in vitro and in vivo. The optimal fluorescent intensities of ND particles were observed in the human lung cancer cells and nude mice under in vivo imaging system. The fluorescence signal of ND particles can be real-time detected in the xenografted human lung tumor formation of nude mice. Moreover, the ND-conjugated specific EGFR antibody cetuximab (Cet) can track the location and distribution of EGFR proteins of lung cancer cells in vitro and in vivo. ND-Cet treatment increased cellular uptake ability of nanocomposites in the EGFR-expressed cells but not in the EGFR-negative lung cancer cells. Interestingly, single ND-Cet complex can be directly observed on the protein G bead by immunoprecipitation and confocal microscopy. Besides, the EGFR proteins were transported to lysosomes for degradation. Together, this study demonstrates that ND-conjugated Cet can apply for targeting EGFR and monitoring tumorigenesis during lung cancer progression and therapy.

7.
Biochem Pharmacol ; 193: 114792, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34597670

RESUMEN

Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) are currently used therapy for non-small cell lung cancer (NSCLC) patients; however, drug resistance during cancer treatment is a critical problem. Survivin is an anti-apoptosis protein, which promotes cell proliferation and tumor growth that highly expressed in various human cancers. Here, we show a novel synthetic compound derived from gefitinib, do-decyl-4-(4-(3-(4-(3-chloro-4-fluorophenylamino)-7-methoxyquinazolin-6-yloxy)propyl) piper-azin-1-yl)-4-oxobutanoate, which is named as SP101 that inhibits survivin expression and tumor growth in both the EGFR-wild type and -T790M of NSCLC. SP101 blocked EGFR kinase activity and induced apoptosis in the A549 (EGFR-wild type) and H1975 (EGFR-T790M) lung cancer cells. SP101 reduced survivin proteins and increased active caspase 3 for inducing apoptosis. Ectopic expression of survivin by a survivin-expressed vector attenuated the SP101-induced cell death in lung cancer cells. Moreover, SP101 inhibited the gefitinib-resistant tumor growth in the xenograft human H1975 lung tumors of nude mice. SP101 substantially reduced survivin proteins but conversely elicited active caspase 3 proteins in tumor tissues. Besides, SP101 exerted anticancer abilities in the gefitinib resistant cancer cells separated from pleural effusion of a clinical lung cancer patient. Consistently, SP101 decreased the survivin proteins and the patient-derived xenografted lung tumor growth in nude mice. Anti-tumor ability of SP101 was also confirmed in the murine lung cancer model harboring EGFR T790M-L858R. Together, SP101 is a new EGFR inhibitor with inhibiting survivin that can be developed for treating EGFR wild-type and EGFR-mutational gefitinib-resistance in human lung cancers.


Asunto(s)
Gefitinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Piperazinas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Quinazolinas/farmacología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Survivin/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Piperazinas/uso terapéutico , Quinazolinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Thorac Cancer ; 10(11): 2133-2141, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31571421

RESUMEN

BACKGROUND: The early stages of lung cancer with ground-glass opacity (GGO) pattern are detectable. However, it remains a challenge for physicians how best to treat GGO nodules as invasive tumors are occasionally found, even in pure GGO nodules. This study identified the invasiveness by the clinical features of the GGO nodules. METHODS: A retrospective review of patients with resected GGO nodules from August 2015 to February 2019 was performed. A total of 92 patients were enrolled and gender, age, tumor location, operation times, tumor size, histopathologic and radiological findings were analyzed. RESULTS: In this study, the sequential of GGO nodules invasiveness was significantly related to the tumor size and solid component. After regrouping the population into preinvasive and invasive groups, the invasiveness was significantly related to tumor size, solid component, tumor volume and maximal computed tomography (CT) value. CONCLUSIONS: The invasiveness is difficult to evaluate according to the CT features only when the GGO nodules are less than 2 cm and consolidation/tumor ratio (C/T ratio) are less than 0.25. Tumor size and solid component are significant factors for predicting invasiveness. Part-solid GGO nodules with a diameter greater than 1 cm require surgical consideration due to their high risk of invasiveness.


Asunto(s)
Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Invasividad Neoplásica/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Tomografía Computarizada Multidetector , Invasividad Neoplásica/patología , Estudios Retrospectivos , Carga Tumoral
9.
Acta Biomater ; 86: 395-405, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30660004

RESUMEN

Breast cancer is the most common malignancy and a leading cause of cancer-related mortality among women worldwide. Triple-negative breast cancer (TNBC) is characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). However, epidermal growth factor receptor (EGFR) is highly expressed in most of the TNBCs, which may provide a potential target for EGFR targeting therapy. Nanodiamond (ND) is a carbon-based nanomaterial with several advantages, including fluorescence emission, biocompatibility, and drug delivery applications. In this study, we designed a nanocomposite by using ND conjugated with paclitaxel (PTX) and cetuximab (Cet) for targeting therapy on the EGFR-positive TNBC cells. ND-PTX inhibited cell viability and induced mitotic catastrophe in various human breast cancer cell lines (MDA-MB-231, MCF-7, and BT474); in contrast, ND alone did not induce cell death. ND-PTX inhibited the xenografted human breast tumors in nude mice. We further investigated ND-PTX-Cet drug efficacy on the TNBC of MDA-MB-231 breast cancer cells. ND-PTX-Cet could specifically bind to EGFR and enhanced the anticancer effects including drug uptake levels, mitotic catastrophe, and apoptosis in the EGFR-expressed MDA-MB-231 cells but not in the EGFR-negative MCF-7 cells. In addition, ND-PTX-Cet increased the protein levels of active caspase-3 and phospho-histone H3 (Ser10). Furthermore, ND-PTX-Cet showed more effective on the reduction of TNBC tumor volume by comparison with ND-PTX. Taken together, these results demonstrated that ND-PTX-Cet nanocomposite enhanced mitotic catastrophe and apoptosis by targeting EGFR of TNBC cells, which can provide a feasible strategy for TNBC therapy. STATEMENT OF SIGNIFICANCE: Current TNBC treatment is ineffective against the survival rate of TNBC patients. Therefore, the development of new treatment strategies for TNBC patients is urgently needed. Here, we have designed a nanocomposite by targeting on the EGFR of TNBC to enhance therapeutic efficacy by ND-conjugated PTX and Cet (ND-PTX-Cet). Interestingly, we found that the co-delivery of Cet and PTX by ND enhanced the apoptosis, mitotic catastrophe and tumor inhibition in the EGFR-expressed TNBC in vitro and in vivo. Consequently, this nanocomposite ND-PTX-Cet can be applied for targeting EGFR of human TNBC therapy.


Asunto(s)
Cetuximab/uso terapéutico , Receptores ErbB/metabolismo , Nanocompuestos/química , Nanodiamantes/química , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adulto , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cetuximab/farmacología , Endocitosis/efectos de los fármacos , Femenino , Histonas/metabolismo , Humanos , Ratones Desnudos , Mitosis/efectos de los fármacos , Paclitaxel/farmacología , Fosforilación/efectos de los fármacos , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Sci Rep ; 7(1): 9814, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28852020

RESUMEN

The poor intracellular uptake and non-specific binding of anticancer drugs into cancer cells are the bottlenecks in cancer therapy. Nanocarrier platforms provide the opportunities to improve the drug efficacy. Here we show a carbon-based nanomaterial nanodiamond (ND) that carried paclitaxel (PTX), a microtubule inhibitor, and cetuximab (Cet), a specific monoclonal antibody against epidermal growth factor receptor (EGFR), inducing mitotic catastrophe and tumor inhibition in human colorectal cancer (CRC). ND-PTX blocked the mitotic progression, chromosomal separation, and induced apoptosis in the CRC cells; however, NDs did not induce these effects. Conjugation of ND-PTX with Cet (ND-PTX-Cet) was specifically binding to the EGFR-positive CRC cells and enhanced the mitotic catastrophe and apoptosis induction. Besides, ND-PTX-Cet markedly decreased tumor size in the xenograft EGFR-expressed human CRC tumors of nude mice. Moreover, ND-PTX-Cet induced the mitotic marker protein phospho-histone 3 (Ser10) and apoptotic protein active-caspase 3 for mitotic catastrophe and apoptosis. Taken together, this study demonstrated that the co-delivery of PTX and Cet by ND enhanced the effects of mitotic catastrophe and apoptosis in vitro and in vivo, which may be applied in the human CRC therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Cetuximab/administración & dosificación , Mitosis/efectos de los fármacos , Nanodiamantes , Paclitaxel/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cetuximab/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Humanos , Nanodiamantes/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Paclitaxel/química , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Bioorg Med Chem Lett ; 27(8): 1784-1788, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28268137

RESUMEN

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Clorhidrato de Erlotinib/análogos & derivados , Clorhidrato de Erlotinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/farmacología , Animales , Antineoplásicos/síntesis química , Carcinoma de Pulmón de Células no Pequeñas/patología , Bovinos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clorhidrato de Erlotinib/síntesis química , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/patología , Modelos Moleculares , Albúmina Sérica Bovina/síntesis química
12.
Autophagy ; 13(1): 187-200, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27846374

RESUMEN

Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.


Asunto(s)
Autofagia , Nanodiamantes/química , Ubiquitina/química , Células A549 , Animales , Muerte Celular , Línea Celular Tumoral , Senescencia Celular , Proteínas Fluorescentes Verdes/química , Humanos , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Desnudos , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/química , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Proteínas Recombinantes/química , Proteína Sequestosoma-1/química
13.
Oncotarget ; 7(13): 16462-78, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26918943

RESUMEN

The epithelial-to-mesenchymal (EMT) transition is a prerequisite for conferring metastatic potential during tumor progression. microRNA-30a (miR-30a) expression was significantly lower in aggressive breast cancer cell lines compared with non-invasive breast cancer and non-malignant mammary epithelial cell lines. In contrast, miR-30a overexpression reversed the mesenchymal appearance of cancer cells to result in a cobblestone-like epithelial phenotype. We identified Slug, one of the master regulators of EMT, as a target of miR-30a using in silico prediction. Reporter assays indicated that miR-30a could bind to the 3'-untranslted region of Slug mRNA. Furthermore, we linked miR-30a to increased expression of claudins, a family of tight junction transmembrane proteins. An interaction between Slug and E-box in the claudin promoter sequences was reduced upon miR-30a overexpression, further leading to reduction of filopodia formation and decreased invasiveness/metastasis capabilities of breast cancer cells. Consistently, delivery of miR-30a in xenografted mice decreased tumor invasion and migration. In patients with breast cancer, a significantly elevated risk of the miR-30alow/CLDN2low/FSCNhigh genotype was observed, linking to a phenotypic manifestation of larger tumor size, lymph node metastasis, and advanced tumor stage among patients. In conclusion, the miR-30a/Slug axis inhibits mesenchymal tumor development by interfering with metastatic cancer cell programming and may be a potential target for therapy in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Factores de Transcripción de la Familia Snail/genética , Proteínas de Uniones Estrechas/genética , Regiones no Traducidas 3'/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Claudinas/genética , Claudinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Confocal , Metástasis de la Neoplasia , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Trasplante Heterólogo
14.
Bioorg Med Chem Lett ; 25(10): 2074-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25890802

RESUMEN

Nanodiamond has recently received considerable attention due to the various possible applications in medical field such as drug delivery and bio-labeling. For this purpose suitable and effective surface functionalization of the diamond material are required. A versatile and reproducible surface modification method of nanoscale diamond is essential for functionalization. We introduce the input of microwave energy to assist the functionalization of nanodiamond surface. The feasibility of such a process is illustrated by comparing the biological assay of ND-paclitaxel synthesized by conventional and microwave irradiating. Using a microwave we manage to have approximately doubled grafted molecules per nanoparticle of nanodiamond.


Asunto(s)
Antineoplásicos Fitogénicos/química , Diamante , Microondas , Nanoestructuras , Paclitaxel/química
15.
Sci Rep ; 4: 6919, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25370150

RESUMEN

Nanodiamond (ND) has emerged as a promising carbon nanomaterial for therapeutic applications. In previous studies, ND has been reported to have outstanding biocompatibility and high uptake rate in various cell types. ND containing nitrogen-vacancy centers exhibit fluorescence property is called fluorescent nanodiamond (FND), and has been applied for bio-labeling agent. However, the influence and application of FND on the nervous system remain elusive. In order to study the compatibility of FND on the nervous system, neurons treated with FNDs in vitro and in vivo were examined. FND did not induce cytotoxicity in primary neurons from either central (CNS) or peripheral nervous system (PNS); neither did intracranial injection of FND affect animal behavior. The neuronal uptake of FNDs was confirmed using flow cytometry and confocal microscopy. However, FND caused a concentration-dependent decrease in neurite length in both CNS and PNS neurons. Time-lapse live cell imaging showed that the reduction of neurite length was due to the spatial hindrance of FND on advancing axonal growth cone. These findings demonstrate that FNDs exhibit low neuronal toxicity but interfere with neuronal morphogenesis, and should be taken into consideration when applications involve actively growing neurites (e.g. nerve regeneration).


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/toxicidad , Nanodiamantes/toxicidad , Neuronas/fisiología , Animales , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Colorantes Fluorescentes/metabolismo , Ganglios Espinales/citología , Hipocampo/citología , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Cultivo Primario de Células
16.
Bioorg Med Chem Lett ; 24(22): 5247-50, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305687

RESUMEN

The interactions of gefitinib (Iressa) in EGFR are hydrogen bonding and van der Waals forces through quinazoline and aniline rings. However the morpholino group of gefitinib is poorly ordered due to its weak electron density. A series of novel piperazino analogues of gefitinib where morpholino group substituted with various piperazino groups were designed and synthesized. Most of them indicated significant anti-cancer activities against human cancer cell lines. In particular, compounds 52-54 showed excellent potency against cancer cells. Convergent synthetic approach has been developed for the synthesis of gefitinib intermediate which can lead to gefitinib as well as numerous analogues.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Gefitinib , Humanos , Piperazinas/química , Quinazolinas/síntesis química
17.
J Cell Biochem ; 115(11): 1888-99, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24905183

RESUMEN

Honokiol is a small biphenolic compound, which exerts antitumor activities; however, the precise mechanism of honokiol-induced apoptosis in the human colorectal cancer cells remains unclear. Here, we show that survivin and p53 display the opposite role on the regulation of honokiol-induced apoptosis in the human colorectal cancer cells. Honokiol induced the cell death and apoptosis in various colorectal cancer cell lines. Moreover, honokiol elicited the extrinsic death receptor pathway of DR5 and caspase 8 and the intrinsic pathway of caspase 9. The common intrinsic and extrinsic downstream targets of activated caspase 3 and PARP protein cleavage were induced by honokiol. Interestingly, honokiol reduced anti-apoptotic survivin protein and gene expression. Transfection with a green fluorescent protein (GFP)-survivin-expressed vector increased the colorectal cancer cell viability and resisted the honokiol-induced apoptosis. Meantime, honokiol increased total p53 and the phosphorylated p53 proteins at Ser15 and Ser46. The p53-wild type colorectal cancer cells were exhibited greater cytotoxicity, apoptosis and survivin reduction than the p53-null cancer cells after treatment with honokiol. Together, these findings demonstrate that the existence of survivin and p53 can modulate the honokiol-induced apoptosis in the human colorectal cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Compuestos de Bifenilo/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Lignanos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos , Células HCT116 , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Transducción de Señal/efectos de los fármacos , Survivin , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Chem Biol Interact ; 220: 41-50, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24931875

RESUMEN

Butein (3,4,2',4'-tetrahydroxychalcone) is a promising natural polyphenolic compound that shows the growth inhibitory activity in human cancer cells; however, the precise mechanism is still unclear. Securin plays pivotal role in cancer cell proliferation and tumorigenesis. Here, we report the presence of securin that could modulate apoptosis and tumor growth ability in the butein-treated human colorectal cancer. Butein induced caspase-3 activation and PARP protein cleavage for apoptosis induction in human colorectal cancer cells. Interestingly, butein reduced the securin protein levels but conversely increased the phospho-histone H3 proteins, mitotic arrest and abnormal chromosomes segregation in cancer cells. The securin-null colorectal cancer cells were more sensitive on the reduction of cell viability than the securin-wild type cancer cells following butein treatment. The loss of securin in human colorectal cancer cells decreased tumor growth ability in nude mice. Moreover, butein reduced the tumor size of xenografted human colorectal tumors of nude mice. Taken together, this study demonstrates for the first time that the depletion of securin mediates the butein-induced apoptosis and colorectal tumor inhibition.


Asunto(s)
Apoptosis/efectos de los fármacos , Chalconas/farmacología , Neoplasias Colorrectales/fisiopatología , Securina/genética , Animales , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Desnudos , Securina/metabolismo
19.
Biomaterials ; 35(28): 8261-72, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973297

RESUMEN

Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented.


Asunto(s)
Lípidos/química , Nanopartículas/química , Transfección/métodos , Adenosina Trifosfato/química , Animales , Células COS , Línea Celular Tumoral , Supervivencia Celular , Chlorocebus aethiops , ADN/química , Ácido Fólico/química , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Hierro/química , Nanopartículas del Metal/química , Metacrilatos/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Propiedades de Superficie , Pez Cebra
20.
Sci Rep ; 4: 5004, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24830447

RESUMEN

Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker ß-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.


Asunto(s)
Materiales Biocompatibles/metabolismo , Diferenciación Celular/fisiología , Nanodiamantes/química , Neuronas/metabolismo , Neuronas/fisiología , Animales , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Biomarcadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Fluorescencia , Humanos , Antígeno Lewis X/metabolismo , Ratones , Ratones Endogámicos C3H , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Tretinoina/metabolismo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...