Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616208

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new biomarker and therapeutic targets options are essential. METHOD: We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype characteristics. Our experimental results confirm that CDC25C gene can serve as a potential marker for poor prognosis in LUAD. RESULTS: We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways. CONCLUSIONS: Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration, which can be used as a potential biomarker for LUAD.

2.
Front Immunol ; 14: 1228004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781365

RESUMEN

Background: Exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs), characterized by the overexpression of immune checkpoints (IC), is a major impediment to anti-tumor immunity. However, the exhaustion status of CD8+TILs in angioimmunoblastic T cell lymphoma (AITL) remains unclear. Therefore, we aimed to elucidate the exhaustion status of CD8+TILs in AITL and its influence on prognosis. Methods: The correlation between CD8+TILs and IC expression in AITL was analyzed using single-cell RNA sequencing (n = 2), flow cytometry (n = 20), and RNA sequencing (n = 20). Biological changes related to CD8+TILs exhaustion at different cytotoxic T lymphocyte (CTL) levels (mean expression levels of CD8A, CD8B, GZMA, GZMB, and PRF1) in AITL were evaluated using RNA sequencing (n = 20) and further validated using the GEO dataset (n = 51). The impact of CD8 protein expression and CTL levels on patient prognosis was analyzed using flow cytometry and RNA sequencing, respectively. Results: Our findings demonstrated that the higher the infiltration of CD8+TILs, the higher was the proportion of exhausted CD8+TILs characterized by the overexpression of multiple IC. This was accompanied by extensive exhaustion-related biological changes, which suggested severe exhaustion in CD8+TILs and may be one of the main reasons for the poor prognosis of patients with high CD8+TILs and CTL. Conclusion: Our study comprehensively reveals the exhaustion status of CD8+TILs and their potential negative impact on AITL prognosis, which facilitates further mechanistic studies and is valuable for guiding immunotherapy strategies.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos Infiltrantes de Tumor , Linfoma de Células T , Humanos , Linfoma de Células T/diagnóstico , Linfoma de Células T/inmunología , Pronóstico , Linfocitos T Citotóxicos
3.
Cancer Sci ; 113(11): 3722-3734, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087034

RESUMEN

Enhanced fatty acid synthesis provides proliferation and survival advantages for tumor cells. Apelin is an adipokine, which serves as a ligand of G protein-coupled receptors that promote tumor growth in malignant cancers. Here, we confirmed that apelin increased sterol regulatory element-binding protein 1 (SREBP1) activity and induced the expression of glutamine amidotransferase for deamidating high-mobility group A 1 (HMGA1) to promote fatty acid synthesis and proliferation of lung cancer cells. This post-translational modification stabilized the HMGA1 expression and enhanced the formation of the apelin-HMGA1-SREBP1 complex to facilitate SREBP1 activity for lipid metabolism and lung cancer cell growth. We uncovered the pivotal role of apelin-mediated deamidation of HMGA1 in lipid metabolism and tumorigenesis of lung cancer cells.


Asunto(s)
Proteína HMGA1a , Neoplasias Pulmonares , Humanos , Apelina , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica , Ácidos Grasos , Proteína HMGA1a/genética , Lípidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
4.
Signal Transduct Target Ther ; 7(1): 289, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36008393

RESUMEN

A thorough interrogation of the immune landscape is crucial for immunotherapy strategy selection and prediction of clinical responses in non-small-cell lung cancer (NSCLC) patients. Single-cell RNA sequencing (scRNA-seq) techniques have prompted the opportunity to dissect the distinct immune signatures between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), the two major subtypes of NSCLC. Here, we performed scRNA-seq on 72,475 immune cells from 40 samples of tumor and matched adjacent normal tissues spanning 19 NSCLC patients, and drew a systematic immune cell transcriptome atlas. Joint analyses of the distinct cellular compositions, differentially expressed genes (DEGs), cell-cell interactions, pseudotime trajectory, transcriptomic factors and prognostic factors based on The Cancer Genome Atlas (TCGA), revealed the central roles of cytotoxic and effector T and NK cells and the distinct functional macrophages (Mφ) subtypes in the immune microenvironment heterogeneity between LUAD and LUSC. The dominant subtype of Mφ was FABP4-Mφ in LUAD and SPP1-Mφ in LUSC. Importantly, we identified a novel lymphocyte-related Mφ cluster, which we named SELENOP-Mφ, and further established its antitumor role in both types, especially in LUAD. Our comprehensive depiction of the immune heterogeneity and definition of Mφ clusters could help design personalized treatment for lung cancer patients in clinical practice.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Análisis de Secuencia de ARN , Microambiente Tumoral/genética
5.
Biomater Sci ; 10(8): 2062-2075, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35315457

RESUMEN

Various hydrogels derived from the xenogeneic extracellular matrix (ECM) have been utilised to promote the repair and reconstruction of numerous tissues; however, there are few studies on hydrogels derived from allogeneic specimens. Human placenta derived hydrogels have been used in the therapy of ischaemic myocardium; however, their physicochemical properties and effects on cellular behaviour remain elusive. As the human placenta retains pro-angiogenic growth factors, it is hypothesized that the placenta hydrogels possess the potential to improve angiogenesis. In this study, a soluble decellularized human placenta matrix generated using a modified method could be stored in a powder form and could be used to form a hydrogel in vitro. Effective decellularization was evaluated by analysing the DNA content and histology images. The placenta hydrogel exhibited a fibrous porous morphology and was injectable. Fourier transform infrared (FTIR) spectroscopy revealed that the placenta hydrogel contained both collagen and sulfated glycosaminoglycans (GAGs). In addition, immunofluorescence imaging and enzyme-linked immunosorbent assay (ELISA) showed that the placenta hydrogel retained pro-angiogenic growth factors, including VEGF and bFGF, and transforming growth factor-ß1 (TGF-ß1). Further in vitro and in vivo analyses confirmed that the placenta hydrogel exerted better pro-angiogenic effects than a collagen type I hydrogel. Histological data also showed that the placenta hydrogels did not elicit a grave inflammatory response. In conclusion, the results suggest that placenta hydrogels may be deemed an attractive scaffold for regenerative medicine applications, especially in promoting vessel formation.


Asunto(s)
Matriz Extracelular , Hidrogeles , Matriz Extracelular/metabolismo , Femenino , Humanos , Hidrogeles/química , Placenta , Embarazo
6.
Signal Transduct Target Ther ; 7(1): 9, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35027529

RESUMEN

Lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC) are two major subtypes of non-small cell lung cancer with distinct pathologic features and treatment paradigms. The heterogeneity can be attributed to genetic, transcriptional, and epigenetic parameters. Here, we established a multi-omics atlas, integrating 52 single-cell RNA sequencing and 2342 public bulk RNA sequencing. We investigated their differences in genetic amplification, cellular compositions, and expression modules. We revealed that LUAD and LUSC contained amplifications occurring selectively in subclusters of AT2 and basal cells, and had distinct cellular composition modules associated with poor survival of lung cancer. Malignant and stage-specific gene analyses further uncovered critical transcription factors and genes in tumor progression. Moreover, we identified subclusters with proliferating and differentiating properties in AT2 and basal cells. Overexpression assays of ten genes, including sub-cluster markers AQP5 and KPNA2, further indicated their functional roles, providing potential targets for early diagnosis and treatment in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
7.
Front Pharmacol ; 12: 672769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084143

RESUMEN

The aim of this study was to investigate the correlation between genetic polymorphisms of azathioprine-metabolizing enzymes and adverse reactions of myelosuppression. To this end, a retrospective analysis was performed on 1,419 Chinese patients involving 40 different diseases and 3 genes: ITPA (94C>A), TPMT*3 (T>C), and NUDT15 (415C>T). Strict inclusion and exclusion criteria were established to collect the relative cases, and the correlation between azathioprine and myelosuppression was evaluated by adverse drug reaction criteria. The mutation rates of the three genes were 29.32, 3.73, and 21.92% and grades I to IV myelosuppression occurred in 54 (9.28%) of the 582 patients who took azathioprine. The highest proportion of myelosuppression was observed in 5 of the 6 (83.33%) patients carrying the NUDT15 (415C>T) TT genotype and 12 of the 102 (11.76%) patients carrying the NUDT15 (415C>T) CT genotype. Only the NUDT15 (415C>T) polymorphism was found to be associated with the adverse effects of azathioprine-induced myelosuppression (odds ratio [OR], 51.818; 95% CI, 5.280-508.556; p = 0.001), which suggested that the NUDT15 (415C>T) polymorphism could be an influencing factor of azathioprine-induced myelosuppression in the Chinese population. Epistatic interactions between ITPA (94C>A) and NUDT15 (415C>T) affect the occurrence of myelosuppression. Thus, it is recommended that the genotype of NUDT15 (415C>T) and ITPA (94C>A) be checked before administration, and azathioprine should be avoided in patients carrying a homozygous NUDT15 (415C>T) mutation. This study is the first to investigate the association between genetic polymorphisms of these three azathioprine-metabolizing enzymes and myelosuppression in a large number of cases with a diverse range of diseases.

8.
J Biomed Nanotechnol ; 15(4): 756-768, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30841968

RESUMEN

Chitosan-based hydrogels have been extensively used for tissue regeneration due to the excellent biocompatibility and biodegradability. For lack of endogenous extracellular biomacromolecules, its application is obviously limited. Because of robust biological activity, porcine small intestinal submucosa (SIS) has been considered as promising candidates to increase the bioactivity of hydrogels. Herein, a facile method for the fabrication of SIS powders (SISP)/chitosan chloride (CSCl)-ß-glycerol phosphate (GP)-hydroxyethyl cellulose (HEC) hydrogel was developed. FTIR imaging results demonstrated that SISP and CSCl could be well mixed to form porous three-dimensional SISP/CSCl composite, which underwent sol-gel phage transition from solution to non-flowing hydrogel at 37 °C. Interestingly, the sustained release of VEGF and b-FGF within the composite hydrogel was determined and no initial burst release was observed. SISP/CSCl composite supported the survival and proliferation of NIH 3T3 cells in vitro and good biocompatibility in the SD rats subcutis up to 8 weeks. Furthermore, incorporated with SISP into CSCl delayed the degradation of SISP in vivo, as characterized by histological and High-Frequency Ultrasound (HFUS) measurement. Thus, all the findings suggested that the newlydeveloped injectable and thermosensitive SISP/CSCl composite was a promising and attractive candidate for soft tissue regeneration in the minimally-invasive way.


Asunto(s)
Matriz Extracelular , Animales , Quitosano , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogeles , Ratones , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos
9.
Acta Biomater ; 29: 135-148, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26472613

RESUMEN

Gels derived from decellularized small intestinal submucosa (SIS) have been used to repair ischemic myocardium and deliver protein drug. However, their material properties and effects on cell behavior are not well understood, in part because of the difficulty of gelling in vitro. In this study, soluble SIS matrix, which was easily handled and could effectively gel, was successfully prepared using a modified method. Fourier transform infrared spectroscopy confirmed that the SIS gel contained not only collagen but also sulfated glycosaminoglycans (sGAGs). Interestingly, the sustained release of vascular endothelial growth factor and basic fibroblast growth factor within the SIS gel was detected, and no initial burst release was observed. The SIS gel was more capable of evoking neovascularization than collagen type I gel, as determined by tube formation experiments in human umbilical vein endothelial cells, the mouse aortic ring assay, and animal experiments. The upregulated expression of kinase insert domain receptor (KDR), Notch1, and Ang2, the key genes in angiogenesis that were evaluated in HUVECs seeded on the SIS gel, confirmed that angiogenesis bioactive factors contained in the SIS gel are indeed active and effective. The SIS gel significantly promoted neovascularization compared to the collagen type I gel in vivo. Histology revealed adequate host tissue response in engraftment both types of gels. Together, these data demonstrate that the SIS gel is a promising and attractive candidate for tissue engineering, especially in promoting vessel formation. STATEMENT OF SIGNIFICANCE: The material properties of small intestinal submucosa (SIS) gel and the effect of these properties upon cell behavior are not well understood, in part due to the difficulty of gelling in vitro. In this study, soluble SIS matrix, which was easily handled and gelled was prepared using modified method. The material properties and biocompatibility of SIS gel were explored. The sustained release of growth factors from this gel was observed along with its degradation in vitro. The results demonstrate that the SIS gel promote angiogenesis in vitro and in vivo. The SIS gel biological properties suggest that the constituent ECM molecules released from the gel remain activity. These findings suggested that the SIS gel was a promising candidate for tissue engineering, especially in promoting vessel formation.


Asunto(s)
Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mucosa Intestinal/química , Neovascularización Fisiológica/efectos de los fármacos , Animales , Geles , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Ratones , Células 3T3 NIH , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA