Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(5): e0268231, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617326

RESUMEN

Poultry litter is applied to crop production land in the southern United States as a waste management strategy as it is a nitrogen-rich fertilizer and plentiful throughout the region. While litter is a known reservoir for human enteric pathogens including Salmonella enterica, little is known regarding pathogen prevalence, concentration, and common serotypes within the material. Litter from thirteen farms across four southern states was examined for Salmonella. Samples (n = 490) from six of the thirteen (46.2%) farms tested positive. Thirty-three samples out of 490 (6.7%) were Salmonella positive. Salmonella was ca. 95% less likely to be collected from stacked litter piles than from the poultry house floor or pasture, and every day increase in litter age reduced the likelihood of recovering Salmonella by 5.1%. When present, concentrations of Salmonella in contaminated poultry litter were variable, ranging from <0.45 to >280,000 MPN/g. The most prevalent serotypes found were Kentucky (45.5%), Kiambu (18.2%), and Michigan (12.1%). Salmonella Kentucky also had the greatest distribution and was found on 4 of the 6 (66.7%) positive farms. Results from this survey demonstrated that Salmonella prevalence and concentration in poultry litter is highly variable, and good agricultural practices are critical to safely use poultry litter as a soil amendment on fresh produce fields.


Asunto(s)
Aves de Corral , Salmonella enterica , Animales , Pollos , Humanos , Prevalencia , Serogrupo , Suelo , Estados Unidos/epidemiología
2.
Front Microbiol ; 8: 996, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28626454

RESUMEN

The Salmonella Syst-OMICS consortium is sequencing 4,500 Salmonella genomes and building an analysis pipeline for the study of Salmonella genome evolution, antibiotic resistance and virulence genes. Metadata, including phenotypic as well as genomic data, for isolates of the collection are provided through the Salmonella Foodborne Syst-OMICS database (SalFoS), at https://salfos.ibis.ulaval.ca/. Here, we present our strategy and the analysis of the first 3,377 genomes. Our data will be used to draw potential links between strains found in fresh produce, humans, animals and the environment. The ultimate goals are to understand how Salmonella evolves over time, improve the accuracy of diagnostic methods, develop control methods in the field, and identify prognostic markers for evidence-based decisions in epidemiology and surveillance.

3.
Appl Environ Microbiol ; 82(14): 4100-4111, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27129962

RESUMEN

UNLABELLED: Recurrent outbreaks of bacterial gastroenteritis linked to the consumption of fresh fruits and vegetables highlight the paucity of understanding of the ecology of Salmonella enterica under crop production and postharvest conditions. These gaps in knowledge are due, at least in part, to the lack of suitable surrogate organisms for studies for which biosafety level 2 is problematic. Therefore, we constructed and validated an avirulent strain of Salmonella enterica serovar Typhimurium. The strain lacks major Salmonella pathogenicity islands SPI-1, SPI-2, SPI-3, SPI-4, and SPI-5 as well as the virulence plasmid pSLT. Deletions and the absence of genomic rearrangements were confirmed by genomic sequencing, and the surrogate behaved like the parental wild-type strain on selective media. A loss-of-function (phoN) selective marker allowed the differentiation of this strain from wild-type strains on a medium containing a chromogenic substrate for alkaline phosphatase. Lack of virulence was confirmed by oral infection of female BALB/c mice. The strain persisted in tomatoes, cantaloupes, leafy greens, and soil with the same kinetics as the parental wild-type and selected outbreak strains, and it reached similar final population levels. The responses of this strain to heat treatment and disinfectants were similar to those of the wild type, supporting its potential as a surrogate for future studies on the ecology and survival of Salmonella in production and processing environments. IMPORTANCE: There is significant interest in understanding the ecology of human pathogens in environments outside of their animal hosts, including the crop production environment. However, manipulative field experiments with virulent human pathogens are unlikely to receive regulatory approval due to the obvious risks. Therefore, we constructed an avirulent strain of S. enterica serovar Typhimurium and characterized it extensively.


Asunto(s)
Microbiología de Alimentos/métodos , Frutas/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Verduras/microbiología , Animales , Modelos Animales de Enfermedad , Islas Genómicas , Ratones Endogámicos BALB C , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Salmonella typhimurium/genética , Salmonella typhimurium/aislamiento & purificación , Eliminación de Secuencia , Microbiología del Suelo , Virulencia
4.
J Food Prot ; 77(11): 1919-28, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25364926

RESUMEN

Listeria species have been isolated from diverse environments, often at considerable prevalence, and are known to persist in food processing facilities. The presence of Listeria spp. has been suggested to be a marker for Listeria monocytogenes contamination. Therefore, a study was conducted to (i) determine the prevalence and diversity of Listeria spp. in produce production and natural environments and (ii) identify geographical and/or meteorological factors that affect the isolation of Listeria spp. in these environments. These data were also used to evaluate Listeria spp. as index organisms for L. monocytogenes in produce production environments. Environmental samples collected from produce production (n = 588) and natural (n = 734) environments in New York State were microbiologically analyzed to detect and isolate Listeria spp. The prevalence of Listeria spp. was approximately 33 and 34% for samples obtained from natural environments and produce production, respectively. Co-isolation of L. monocytogenes and at least one other species of Listeria in a given sample was recorded for 3 and 9% of samples from natural environments and produce production, respectively. Soil moisture and proximity to water and pastures were highly associated with isolation of Listeria spp. in produce production environments, while elevation, study site, and proximity to pastures were highly associated with isolation of Listeria spp. in natural environments, as determined by randomForest models. These data show that Listeria spp. were prevalent in both agricultural and nonagricultural environments and that geographical and meteorological factors associated with isolation of Listeria spp. were considerably different between the two environments.


Asunto(s)
Microbiología Ambiental , Microbiología de Alimentos , Listeria/aislamiento & purificación , Geografía , Listeria/clasificación , Listeria/genética , Conceptos Meteorológicos , New York
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA