Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324212

RESUMEN

Synthetic molecular sensors are crucial for real-time monitoring in biological systems and biotechnological applications, where detecting targets amidst potential interferents is essential. This task is particularly challenging in competitive environments that lacking chemically reactive functional groups, common in agricultural, biological, and environmental contexts. Consequently, scientific efforts have focused on developing sensitive and rapid analytical techniques, with fluorescent sensors emerging as prominent tools. Among these, the albumin-based supramolecular fluorescent indicator displacement assay (AS-FIDA) represents a significant advancement. Our research group has extensively contributed to this field, demonstrating the practical utility of various AS-FIDAs. We pioneered the use of albumin (ALB) as a host molecule in these synthetic chemical sensors, marking a notable advancement. AS-FIDA employs ALB as a versatile host molecule with multiple flexible and asymmetrical binding pockets capable of forming complexes with guest dyes, resulting in ALB@dye ensembles tailored for specific analyte recognition. Recent advancements in AS-FIDA have significantly expanded its applications. This review explores recent advances in ALB-based supramolecular sensors and sensor arrays for detecting biologically and environmentally significant molecules, such as pesticides, hormones, biomarkers, reactive species, mycotoxins, drugs, and carcinogens. The versatility of AS-FIDA positions it as a valuable tool in diverse settings, from laboratory research to practical applications in portable devices, smartphone-assisted on-site monitoring, imaging of living cells, and real sample analysis.

2.
Food Chem ; 460(Pt 3): 140779, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121778

RESUMEN

Buprofezin (BUP) is an insect growth regulator widely used in agriculture to control hemipteran pests, particularly the melon aphid, Aphis gossypii, due to its efficiency and low toxicity. Although approved by the Chinese government, its maximum residue limit (MRL) in food is strictly regulated, and conventional techniques for detecting BUP have several limitations. Our study reports successful BUP detection using a supramolecular fluorescent probe DP@ALB, constructed with chalcone-based fluorescent dye DP and albumin as the host. The probe offers advantages such as low cost, visual signal output with high fluorescence color variation, rapid response, and high sensitivity. Additionally, portable test strips enable convenient on-site BUP detection and simplifying field monitoring of spiked real samples. The study achieves precise qualitative and quantitative BUP analysis in grape fruit, groundwater, and soil with satisfactory recoveries. Further, the biological applicability of sensor for the in vitro detection of BUP in L929 living cells was demonstrated. This research breakthrough overcomes the limitations of traditional analytical methods, offering an efficient and reliable approach for food and environmental monitoring and pesticide residue detection.


Asunto(s)
Técnicas Biosensibles , Contaminación de Alimentos , Teléfono Inteligente , Tiadiazinas , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Tiadiazinas/química , Tiadiazinas/análisis , Residuos de Plaguicidas/análisis , Vitis/química , Colorantes Fluorescentes/química , Insecticidas/análisis , Animales , Límite de Detección , Frutas/química
3.
Chem Commun (Camb) ; 60(69): 9226-9229, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39110505

RESUMEN

A novel ratiometric analytical method based on a quantum dot (QD)-integrated supramolecular sensing system successfully achieves the portable on-site detection of nitroxynil.

4.
Chem Zvesti ; 76(11): 7061-7073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966345

RESUMEN

A novel thiazole phenol conjugate, 2-aminothiazolesalicylaldehyde (receptor1) was designed and synthesized for the first time through a single step process via Schiff base condensation reaction. The formation of receptor1 was confirmed by FTIR, 13C NMR, and 1H NMR. The IR spectra confirmed the presence of the aldimine formation. It is further supported by the proton NMR, showing the disappearance of aldehyde peaks and the formation of a new imine peak. This is further corroborated by the 13C NMR. The receptor1 complexing with various metal ions were studied through fluorescence spectroscopy showed its selectivity toward Fe2+ ion following a reverse photoinduced electron transfer (PET) process compared to all other potentially competing ions. The receptor1 was applied as a sensor to sense Fe2+ ion in water samples. The detection limit for Fe2+ ion in drinking water was substantially lower (0.003 µM) than the EPA (environmental protection agency) recommendation (5.37 M). The capability of receptor1 in recovering Fe2+ ion in bore water, tap water, and drinking water was up to 99.5%. The receptor1 was also used as a chelating ligand (receptor1) in molecular docking and it was assessed as a potential inhibitor of NUDT5, a silence hormone signaling for breast cancer. The test compound (PDB: 5NWH) showed good affinity toward the target receptor1 with the binding energy of - 5.23 kcal mol-1. Furthermore, the receptor1 showed excellent reversibility property on adding EDTA solution. Due to the marvelous reversible property, a molecular-scale sequential information processing circuit is designed for the multi-task behavior such as 'Writing-Reading-Erasing-Reading' in the form of binary logic gate. The consecutive addition of Fe2+ ion and EDTA solution to receptor1 paves a way for the construction of INHIBIT logic gate. Additionally, the receptor1 showed the mimicking behavior of molecular keypad lock. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02373-z.

5.
J Fluoresc ; 31(4): 1041-1053, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33939104

RESUMEN

The thiazole based Schiff base 2-hydroxy-1-naphthaldehyde-2-amino thiazole (receptor1) was synthesized through a single step process and characterized by spectroscopic and analytical techniques. The cation detecting ability of the receptor1 was explored by fluorescent spectroscopic methods. The receptor1 has recognized Al3+ ions by a turn-on process over a panel of other potentially competing metal ions. The binding constant of receptor1 with Al3+ was found to be 8.27 × 103 M-1. Computational studies Density Functional Theory (DFT) and Time-dependent Density Functional Theory (TD-DFT) were performed to provide detailed information on electronic states and photophysical property of receptor1 and receptor1-Al3+ ions. MTT (3-(4,5-dimethyl thiazole-2-yl)-2,5-diphenyl tetrazolium bromide) assay and bioimaging applications were made on breast carcinoma cells in humans.


Asunto(s)
Naftalenos , Espectrometría de Fluorescencia , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA