Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22272960

RESUMEN

Patients hospitalized with COVID-19 are at significant risk for superimposed bacterial pneumonia. However, diagnosing superinfection is challenging due to its clinical resemblance to severe COVID-19. We therefore evaluated whether the immune biomarker, procalcitonin, could facilitate the diagnosis of bacterial superinfection. To do so, we identified 185 patients with severe COVID-19 who underwent lower respiratory culture; 85 had superinfection. Receiver operating characteristic curve analysis showed that procalcitonin at the time of culture was incapable of distinguishing patients with bacterial infection (AUC, 0.52). We conclude that static measurement of procalcitonin does not aid in the diagnosis of superinfection in severe COVID-19.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253527

RESUMEN

A dysregulated immune response against coronavirus-2 (SARS-CoV-2) plays a critical role in the outcome of patients with coronavirus disease 2019 (COVID-19). A significant increase in circulating plasmablasts is characteristic of COVID-19 though the underlying mechanisms and its prognostic implications are not known. Here, we demonstrate that in the acute phase of COVID-19, activated PD-1highCXCR5-CD4+ T cells, peripheral helper T cells, (Tph) are significantly increased and promote inflammatory tissue-homing plasmablasts in patients with stable but not severe COVID-19. Analysis of scRNA-seq data revealed that plasmablasts in stable patients express higher levels of tissue-homing receptors including CXCR3. The increased Tph cells exhibited "B cell help" signatures similar to that of circulating T follicular helper (cTfh) cells and promoted B cell differentiation in vitro. Compared with cTfh cells, Tph cells produced more IFN{gamma}, inducing tissue-homing chemokine receptors on plasmablasts. Finally, expansion of activated Tph cells was correlated with the frequency of CXCR3+ plasmablasts in the acute phase of patients with stable disease. Our results demonstrate a novel role for Tph cells in acute viral immunity by inducing ectopic, antibody secreting plasmablasts.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-432177

RESUMEN

Complement activation has been implicated in the pathogenesis of severe SARS-CoV-2 infection. However, it remains to be determined whether increased complement activation is a broad indicator of critical illness (and thus, no different in COVID-19). It is also unclear which pathways are contributing to complement activation in COVID-19, and, if complement activation is associated with certain features of severe SARS-CoV-2 infection, such as endothelial injury and hypercoagulability. To address these questions, we investigated complement activation in the plasma from patients with COVID-19 prospectively enrolled at two tertiary care centers. We compared our patients to two non-COVID cohorts: (a) patients hospitalized with influenza, and (b) patients admitted to the intensive care unit (ICU) with acute respiratory failure requiring invasive mechanical ventilation (IMV). We demonstrate that circulating markers of complement activation (i.e., sC5b-9) are elevated in patients with COVID-19 compared to those with influenza and to patients with non-COVID-19 respiratory failure. Further, the results facilitate distinguishing those who are at higher risk of worse outcomes such as requiring ICU admission, or IMV. Moreover, the results indicate enhanced activation of the alternative complement pathway is most prevalent in patients with severe COVID-19 and is associated with markers of endothelial injury (i.e., Ang2) as well as hypercoagulability (i.e., thrombomodulin and von Willebrand factor). Our findings identify complement activation to be a distinctive feature of COVID-19, and provide specific targets that may be utilized for risk prognostication, drug discovery and personalized clinical trials. SUMMMARYComplement has been implicated in COVID-19. However, whether this is distinctive of COVID-19 remains unanswered. Ma et al report increased complement activation in COVID-19 compared to influenza and non-COVID respiratory failure, and demonstrate alternative pathway activation as a key marker of multiorgan failure and death.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21250637

RESUMEN

SARS-CoV-2 infection has so far affected over 42 million people worldwide, causing over 1.1 million deaths. With the large majority of SARS-CoV-2 infected individuals being asymptomatic, major concerns have been raised about possible long-term consequences of the infection. We developed an antigen capture assay to detect SARS-CoV-2 spike protein in urine samples from COVID-19 patients whose diagnosis was confirmed by PCR from nasopharyngeal swabs (NP-PCR+). The study used a collection of 233 urine samples from 132 participants from Yale New Haven Hospital and the Childrens Hospital of Philadelphia obtained during the pandemic (106 NP-PCR+ and 26 NP-PCR-) as well as a collection of 20 urine samples from 20 individuals collected before the pandemic. Our analysis identified 23 out of 91 (25%) NP-PCR+ adult participants with SARS-CoV-2 spike S1 protein in urine (Ur-S+). Interestingly, although all NP-PCR+ children were Ur-S-, 1 NP-PCR-child was found to be positive for spike protein in urine. Of the 23 Ur-S+ adults, only 1 individual showed detectable viral RNA in urine. Our analysis further showed that 24% and 21% of NP-PCR+ adults have high levels of albumin and cystatin C in urine, respectively. Among individuals with albuminuria (>0.3 mg/mg of creatinine) statistical correlation could be found between albumin and spike protein in urine. Together, our data showe that 1 of 4 of SARS-CoV-2 infected individuals develop renal abnormalities such as albuminuria. Awareness about the long-term impact of these findings is warranted.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20241364

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV2 infection in otherwise healthy children. Here, we define immune abnormalities in MIS-C compared to adult COVID-19 and pediatric/adult healthy controls using single-cell RNA sequencing, antigen receptor repertoire analysis, unbiased serum proteomics, and in vitro assays. Despite no evidence of active infection, we uncover elevated S100A-family alarmins in myeloid cells and marked enrichment of serum proteins that map to myeloid cells and pathways including cytokines, complement/coagulation, and fluid shear stress in MIS-C patients. Moreover, NK and CD8 T cell cytotoxicity genes are elevated, and plasmablasts harboring IgG1 and IgG3 are expanded. Consistently, we detect elevated binding of serum IgG from severe MIS-C patients to activated human cardiac microvascular endothelial cells in culture. Thus, we define immunopathology features of MIS-C with implications for predicting and managing this SARS-CoV2-induced critical illness in children.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20235002

RESUMEN

Fine scale delineation of epitopes recognized by the antibody response to SARS-CoV-2 infection will be critical to understanding disease heterogeneity and informing development of safe and effective vaccines and therapeutics. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify epitope binding specificities with single amino acid resolution. We applied SERA broadly, across human, viral and viral strain proteomes in multiple cohorts with a wide range of outcomes from SARS-CoV-2 infection. We identify dominant epitope motifs and profiles which effectively classify COVID-19, distinguish mild from severe disease, and relate to neutralization activity. We identify a repertoire of epitopes shared by SARS-CoV-2 and endemic human coronaviruses and determine that a region of amino acid sequence identity shared by the SARS-CoV-2 furin cleavage site and the host protein ENaC-alpha is a potential cross-reactive epitope. Finally, we observe decreased epitope signal for mutant strains which points to reduced antibody response to mutant SARS-CoV-2. Together, these findings indicate that SERA enables high resolution of antibody epitopes that can inform data-driven design and target selection for COVID-19 diagnostics, therapeutics and vaccines.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-383661

RESUMEN

1The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from these complex datasets, we present an approach called Multiscale PHATE, which learns abstracted biological features from data that can be directly predictive of disease. Built on a continuous coarse graining process called diffusion condensation, Multiscale PHATE creates a tree of data granularities that can be cut at coarse levels for high level summarizations of data, as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Through our analysis of patient samples, we identify CD16hi CD66blo neutrophil and IFN{gamma}+GranzymeB+ Th17 cell responses enriched in patients who die. Further, we show that population groupings Multiscale PHATE discovers can be directly fed into a classifier to predict disease outcome. We also use Multiscale PHATE-derived features to construct two different manifolds of patients, one from abstracted flow cytometry features and another directly on patient clinical features, both associating immune subsets and clinical markers with outcome.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-294231

RESUMEN

Emerging clinical data demonstrates that COVID-19, the disease caused by SARS-CoV2, is a syndrome that variably affects nearly every organ system. Indeed, the clinical heterogeneity of COVID-19 ranges from relatively asymptomatic to severe disease with death resultant from multiple constellations of organ failures. In addition to genetics and host characteristics, it is likely that viral dissemination is a key determinant of disease manifestation. Given the complexity of disease expression, one major limitation in current animal models is the ability to capture this clinical heterogeneity due to technical limitations related to murinizing SARS-CoV2 or humanizing mice to render susceptible to infection. Here we describe a murine model of COVID-19 using respiratory infection with the native mouse betacoronavirus MHV-A59. We find that whereas high viral inoculums uniformly led to hypoxemic respiratory failure and death, lethal dose 50% (LD50) inoculums led to a recapitulation of most hallmark clinical features of COVID-19, including lymphocytopenias, heart and liver damage, and autonomic dysfunction. We find that extrapulmonary manifestations are due to viral metastasis and identify a critical role for type-I but not type-III interferons in preventing systemic viral dissemination. Early, but not late treatment with intrapulmonary type-I interferon, as well as convalescent serum, provided significant protection from lethality by limiting viral dissemination. We thus establish a Biosafety Level II model that may be a useful addition to the current pre-clinical animal models of COVID-19 for understanding disease pathogenesis and facilitating therapeutic development for human translation.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20183830

RESUMEN

Expanding testing capabilities is integral to managing the further spread of SARS-CoV-2 and developing reopening strategies, particularly in regards to identifying and isolating asymptomatic and pre-symptomatic individuals. Central to meeting testing demands are specimens that can be easily and reliably collected and laboratory capacity to rapidly ramp up to scale. We and others have demonstrated that high and consistent levels of SARS-CoV-2 RNA can be detected in saliva from COVID-19 inpatients, outpatients, and asymptomatic individuals. As saliva collection is non-invasive, extending this strategy to test pooled saliva samples from multiple individuals could thus provide a simple method to expand testing capacity. However, hesitation towards pooled sample testing arises due to the dilution of positive samples, potentially shifting weakly positive samples below the detection limit for SARS-CoV-2 and thereby decreasing the sensitivity. Here, we investigated the potential of pooling saliva samples by 5, 10, and 20 samples prior to RNA extraction and RT-qPCR detection of SARS-CoV-2. Based on samples tested, we conservatively estimated a reduction of 7.41%, 11.11%, and 14.81% sensitivity, for each of the pool sizes, respectively. Using these estimates we modeled anticipated changes in RT-qPCR cycle threshold to show the practical impact of pooling on results of SARS-CoV-2 testing. In tested populations with greater than 3% prevalence, testing samples in pools of 5 requires the least overall number of tests. Below 1% however, pools of 10 or 20 are more beneficial and likely more supportive of ongoing surveillance strategies.

10.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20172189

RESUMEN

BackgroundNovel coronavirus (SARS-CoV-2) has infected over 17 million. Novel therapies are urgently needed. Janus-kinase (JAK) inhibitors and Type I interferons have emerged as potential antiviral candidates for COVID-19 patients for their proven efficacy against diseases with excessive cytokine release and by their ability to promote viral clearance in past coronaviruses, respectively. We conducted a systemic review and meta-analysis to evaluate role of these therapies in COVID-19 patients. MethodsMEDLINE and MedRxiv were searched until July 30th, 2020, including studies that compared treatment outcomes of humans treated with JAK-inhibitor or Type I interferon against controls. Inclusion necessitated data with clear risk estimates or those that permitted back-calculation. ResultsWe searched 733 studies, ultimately including four randomized and eleven non-randomized clinical trials. JAK-inhibitor recipients had significantly reduced odds of mortality (OR, 0.12; 95%CI, 0.03-0.39, p=0.0005) and ICU admission (OR, 0.05; 95%CI, 0.01-0.26, p=0.0005), and had significantly increased odds of hospital discharge (OR, 22.76; 95%CI, 10.68-48.54, p<0.00001), when compared to standard treatment group. Type I interferon recipients had significantly reduced odds of mortality (OR, 0.19; 95%CI, 0.04-0.85, p=0.03), and increased odds of discharge bordering significance (OR, 1.89; 95%CI, 1.00-3.59, p=0.05). ConclusionsJAK-inhibitor treatment is significantly associated with positive clinical outcomes regarding mortality, ICU admission, and discharge. Type I interferon treatment is associated with positive clinical outcomes regarding mortality and discharge. While these data show promise, additional randomized clinical trials are needed to further elucidate the efficacy of JAK-inhibitors and Type I interferons and clinical outcomes in COVID-19. KEY MESSAGESO_ST_ABSKey QuestionC_ST_ABSCan treatment of hospitalized COVID-19 patients with JAK-inhibitor or Type I interferon confer favorable clinical outcomes? Bottom LineMeta-analysis demonstrates that JAK-inhibitor treatment was significantly associated with favorable clinical outcomes in terms of mortality, requiring mechanical ventilation, and hospital discharge, while treatment with Type I interferon was significantly associated with decreased mortality. Why Read On?This study conducted a systematic review of human trials that treated patients with JAK-inhibitors or Type I interferon, and it elaborates on the potential benefits of administering these therapies at different moments of the disease course despite apparently opposite mechanism of action of these two interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA