Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 103(5): 757-67, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19098067

RESUMEN

BACKGROUND AND AIMS: Plants are likely to invest in multiple defences, given the variety of sources of biotic and abiotic damage to which they are exposed. However, little is known about syndromes of defence across plant species and how these differ in contrasting environments. Here an investigation is made into the association between carbon-based chemical and mechanical defences, predicting that species that invest heavily in mechanical defence of leaves will invest less in chemical defence. METHODS: A combination of published and unpublished data is used to test whether species with tougher leaves have lower concentrations of phenolics, using 125 species from four regions of Australia and the Pacific island of New Caledonia, in evergreen vegetation ranging from temperate shrubland and woodland to tropical shrubland and rainforest. Foliar toughness was measured as work-to-shear and specific work-to-shear (work-to-shear per unit leaf thickness). Phenolics were measured as 'total phenolics' and by protein precipitation (an estimate of tannin activity) per leaf dry mass. KEY RESULTS: Contrary to prediction, phenolic concentrations were not negatively correlated with either measure of leaf toughness when examined across all species, within regions or within any plant community. Instead, measures of toughness (particularly work-to-shear) and phenolics were often positively correlated in shrubland and rainforest (but not dry forest) in New Caledonia, with a similar trend suggested for shrubland in south-western Australia. The common feature of these sites was low concentrations of soil nutrients, with evidence of P limitation. CONCLUSIONS: Positive correlations between toughness and phenolics in vegetation on infertile soils suggest that additive investment in carbon-based mechanical and chemical defences is advantageous and cost-effective in these nutrient-deficient environments where carbohydrate may be in surplus.


Asunto(s)
Ambiente , Fenoles/análisis , Hojas de la Planta/fisiología , Árboles/fisiología , Australia , Fenómenos Biomecánicos , Nueva Caledonia , Especificidad de la Especie , Taninos/metabolismo
2.
Ecol Lett ; 11(10): 1065-71, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18627410

RESUMEN

Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.


Asunto(s)
Biodiversidad , Hojas de la Planta/metabolismo , Plantas/genética , Biodegradación Ambiental , Biomasa , Carbono/química , Clima , Filogenia , Desarrollo de la Planta , Hojas de la Planta/genética , Plantas/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA