Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298612

RESUMEN

Bone marrow-derived mesenchymal stem cells (BM-MSC) are reported to induce beneficial effects in the heart following ischemia, but a loss of these cells within hours of implantation could significantly diminish their long-term effect. We hypothesized that early coupling between BM-MSC and ischemic cardiomyocytes through gap junctions (GJ) may play an important role in stem cell survival and retention in the acute phase of myocardial ischemia. To determine the effect of GJ inhibition on murine BM-MSC in vivo, we induced ischemia in mice using 90 min left anterior descending coronary artery (LAD) occlusion followed by BM-MSC implantation and reperfusion. The inhibition of GJ coupling prior to BM-MSC implantation led to early improvement in cardiac function compared to mice in which GJ coupling was not inhibited. Our results with in vitro studies also demonstrated increased survival in BM-MSCs subjected to hypoxia after inhibition of GJ. While functional GJ are critical for the long-term integration of stem cells within the myocardium, early GJ communication may represent a novel paradigm whereby ischemic cardiomyocytes induce a "bystander effect" when coupled to newly transplanted BM-MSC and thus impair cell retention and survival.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Isquemia Miocárdica , Ratones , Animales , Médula Ósea , Miocardio , Isquemia Miocárdica/terapia , Miocitos Cardíacos , Uniones Comunicantes , Trasplante de Células Madre Mesenquimatosas/métodos
2.
Circ Res ; 104(8): 978-86, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19286607

RESUMEN

Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, leading to increased mass transport across the vessel wall and leukocyte extravasation, the key mechanisms in pathogenesis of tissue inflammation and edema. We have previously demonstrated that OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine) significantly enhances vascular endothelial barrier properties in vitro and in vivo and attenuates endothelial hyperpermeability induced by inflammatory and edemagenic agents via Rac and Cdc42 GTPase dependent mechanisms. These findings suggested potential important therapeutic value of barrier-protective oxidized phospholipids. In this study, we examined involvement of signaling complexes associated with caveolin-enriched microdomains (CEMs) in barrier-protective responses of human pulmonary ECs to OxPAPC. Immunoblotting from OxPAPC-treated ECs revealed OxPAPC-mediated rapid recruitment (5 minutes) to CEMs of the sphingosine 1-phosphate receptor (S1P(1)), the serine/threonine kinase Akt, and the Rac1 guanine nucleotide exchange factor Tiam1 and phosphorylation of caveolin-1, indicative of signaling activation in CEMs. Abolishing CEM formation (methyl-beta-cyclodextrin) blocked OxPAPC-mediated Rac1 activation, cytoskeletal reorganization, and EC barrier enhancement. Silencing (small interfering RNA) Akt expression blocked OxPAPC-mediated S1P(1) activation (threonine phosphorylation), whereas silencing S1P(1) receptor expression blocked OxPAPC-mediated Tiam1 recruitment to CEMs, Rac1 activation, and EC barrier enhancement. To confirm our in vitro results in an in vivo murine model of acute lung injury with pulmonary vascular hyperpermeability, we observed that selective lung silencing of caveolin-1 or S1P(1) receptor expression blocked OxPAPC-mediated protection from ventilator-induced lung injury. Taken together, these results suggest Akt-dependent transactivation of S1P(1) within CEMs is important for OxPAPC-mediated cortical actin rearrangement and EC barrier protection.


Asunto(s)
Permeabilidad Capilar , Caveolina 1/metabolismo , Células Endoteliales/metabolismo , Pulmón/irrigación sanguínea , Microdominios de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Caveolina 1/genética , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Microdominios de Membrana/enzimología , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Receptores de Esfingosina-1-Fosfato , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Factores de Tiempo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Proteína de Unión al GTP rac1/metabolismo
3.
Crit Care ; 12(1): R27, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18304335

RESUMEN

BACKGROUND: Mechanical ventilation at high tidal volume (HTV) may cause pulmonary capillary leakage and acute lung inflammation resulting in ventilator-induced lung injury. Besides blunting the Toll-like receptor-4-induced inflammatory cascade and lung dysfunction in a model of lipopolysaccharide-induced lung injury, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exerts direct barrier-protective effects on pulmonary endothelial cells in vitro via activation of the small GTPases Rac and Cdc42. To test the hypothesis that OxPAPC may attenuate lung inflammation and barrier disruption caused by pathologic lung distension, we used a rodent model of ventilator-induced lung injury and an in vitro model of pulmonary endothelial cells exposed to pathologic mechanochemical stimulation. METHODS: Rats received a single intravenous injection of OxPAPC (1.5 mg/kg) followed by mechanical ventilation at low tidal volume (LTV) (7 mL/kg) or HTV (20 mL/kg). Bronchoalveolar lavage was performed and lung tissue was stained for histological analysis. In vitro, the effects of OxPAPC on endothelial barrier dysfunction and GTPase activation were assessed in cells exposed to thrombin and pathologic (18%) cyclic stretch. RESULTS: HTV induced profound increases in bronchoalveolar lavage and tissue neutrophils and in lavage protein. Intravenous OxPAPC markedly attenuated HTV-induced protein and inflammatory cell accumulation in bronchoalveolar lavage fluid and lung tissue. In vitro, high-magnitude stretch enhanced thrombin-induced endothelial paracellular gap formation associated with Rho activation. These effects were dramatically attenuated by OxPAPC and were associated with OxPAPC-induced activation of Rac. CONCLUSION: OxPAPC exhibits protective effects in these models of ventilator-induced lung injury.


Asunto(s)
Fosfatidilcolinas/uso terapéutico , Fosfolípidos/metabolismo , Neumonía/prevención & control , Respiración Artificial/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar/citología , Citocinas/biosíntesis , Impedancia Eléctrica , Masculino , Neumonía/metabolismo , Neumonía/patología , Ratas , Ratas Endogámicas BN
4.
Microvasc Res ; 73(3): 173-81, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17292425

RESUMEN

Increased tissue or serum levels of oxidized phospholipids have been detected in a variety of chronic and acute pathological conditions such as hyperlipidemia, atherosclerosis, heart attack, cell apoptosis, acute inflammation and injury. We have recently described signaling cascades activated by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC)in the human pulmonary artery endothelial cells (EC) and reported potent barrier-protective effects of OxPAPC, which were mediated by small GTPases Rac and Cdc42. In this study we have further characterized signal transduction pathways involved in the OxPAPC-mediated endothelial barrier protection. Inhibitors of small GTPases, protein kinase A (PKA), protein kinase C (PKC), Src family kinases and general inhibitors of tyrosine kinases attenuated OxPAPC-induced barrier-protective response and EC cytoskeletal remodeling. In contrast, small GTPase Rho, Rho kinase, Erk-1,2 MAP kinase and p38 MAP kinase and PI3-kinase were not involved in the barrier-protective effects of OxPAPC. Inhibitors of PKA, PKC, tyrosine kinases and small GTPase inhibitor toxin B suppressed OxPAPC-induced Rac activation and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin. Barrier-protective effects of OxPAPC were not reproduced by platelet activating factor (PAF), which at high concentrations induced barrier dysfunction, but were partially attenuated by PAF receptor antagonist A85783. These results demonstrate for the first time upstream signaling cascades involved in the OxPAPC-induced Rac activation, cytoskeletal remodeling and barrier regulation and suggest PAF receptor-independent mechanisms of OxPAPC-mediated endothelial barrier protection.


Asunto(s)
Permeabilidad Capilar , Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Fosfatidilcolinas/metabolismo , Arteria Pulmonar/metabolismo , Transducción de Señal , Actinas/metabolismo , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Permeabilidad Capilar/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoesqueleto/efectos de los fármacos , Impedancia Eléctrica , Células Endoteliales/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Paxillin/metabolismo , Fosfatidilcolinas/farmacología , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fibras de Estrés/metabolismo , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteínas de Unión al GTP rac/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 292(4): L924-35, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17158600

RESUMEN

We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.


Asunto(s)
Endotelio/fisiología , Pulmón/citología , Fosfolípidos/química , Actinas/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Endotelio/efectos de los fármacos , Humanos , Masculino , Ratones , Oxidación-Reducción , Ácidos Fosfatidicos/farmacología , Fosfatidilcolinas/farmacología , Fosfatidilserinas/farmacología , Fosfolípidos/farmacología , Relación Estructura-Actividad , Trombina/fisiología , beta Catenina/metabolismo
6.
Am J Pathol ; 168(5): 1749-61, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16651639

RESUMEN

Ventilator-induced lung injury is a life-threatening complication of mechanical ventilation at high-tidal volumes. Besides activation of proinflammatory cytokine production, excessive lung distension directly affects blood-gas barrier and lung vascular permeability. To investigate whether restoration of pulmonary endothelial cell (EC) monolayer integrity after agonist challenge is dependent on the magnitude of applied cyclic stretch (CS) and how these effects are linked to differential activation of small GTPases Rac and Rho, pulmonary ECs were subjected to physiologically (5% elongation) or pathologically (18% elongation) relevant levels of CS. Pathological CS enhanced thrombin-induced gap formation and delayed monolayer recovery, whereas physiological CS induced nearly complete EC recovery accompanied by peripheral redistribution of focal adhesions and cortactin after 50 minutes of thrombin. Consistent with differential effects on monolayer integrity, 18% CS enhanced thrombin-induced Rho activation, whereas 5% CS promoted Rac activation during the EC recovery phase. Rac inhibition dramatically attenuated restoration of monolayer integrity after thrombin challenge. Physiological CS preconditioning (5% CS, 24 hours) enhanced EC paracellular gap resolution after step-wise increase to 18% CS (30 minutes) and thrombin challenge. These results suggest a critical role for the CS amplitude and the balance between Rac and Rho in mechanochemical regulation of lung EC barrier.


Asunto(s)
Células Endoteliales/fisiología , Regulación de la Expresión Génica , Pulmón/fisiología , Estrés Mecánico , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Técnicas de Cultivo de Célula , Regulación hacia Abajo , Activación Enzimática , Adhesiones Focales/metabolismo , Humanos , Toxinas Marinas/genética , Modelos Biológicos , Trombina/farmacología , Translocación Genética
7.
Am J Respir Crit Care Med ; 173(10): 1130-8, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16514111

RESUMEN

RATIONALE: Acute inflammation and vascular leak are cardinal features of acute lung injury and the acute respiratory distress syndrome. Nonspecific tissue inflammation and injury in response to infectious and noninfectious insults lead to oxidative stress and the generation of lipid oxidation products, which may inhibit the acute inflammatory response to bacterial components. OBJECTIVE: To test the hypothesis that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) may attenuate the acute lung inflammatory response to lipopolysaccharide (LPS) and enhance lung vascular barrier recovery, we used in vivo and in vitro models of LPS-induced lung injury. METHODS: Rats received intratracheal aerosolized LPS (5 mg/kg) or sterile water with concurrent intravenous injection of OxPAPC (0.5-6.0 mg/kg) or saline alone. Nonoxidized PAPC was used as a control. At 18 h, bronchoalveolar lavage was performed and the lungs were removed for histologic analysis. Measurements of endothelial transmonolayer electrical resistance and immunofluorescent analysis of monolayer integrity were used in an in vitro model of LPS-induced lung vascular barrier dysfunction. MEASUREMENTS AND MAIN RESULTS: In vivo, aerosolized intratracheal LPS induced lung injury with profound increases in bronchoalveolar lavage neutrophils, protein content, and the inflammatory cytokines interleukin 6 and interleukin 1beta, as well as tissue neutrophils. OxPAPC, but not nonoxidized PAPC, markedly attenuated the LPS-induced tissue inflammation, barrier disruption, and cytokine production over a range of doses. In vitro, oxidized phospholipids attenuated LPS-induced endothelial barrier disruption and reversed LPS-induced cytoskeletal remodeling and disruption of monolayer integrity. CONCLUSIONS: These studies demonstrate in vivo and in vitro protective effects of oxidized phospholipids on LPS-induced lung dysfunction.


Asunto(s)
Mediadores de Inflamación/análisis , Fosfatidilcolinas/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/patología , Animales , Biopsia con Aguja , Líquido del Lavado Bronquioalveolar/citología , Permeabilidad Capilar/efectos de los fármacos , Citocinas/análisis , Modelos Animales de Enfermedad , Inmunohistoquímica , Interleucina-1/análisis , Interleucina-6/análisis , Lipopolisacáridos , Masculino , Probabilidad , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA