Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 631(8022): 867-875, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987588

RESUMEN

Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3-7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12-22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP-PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase-cAMP-PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase-cAMP-PKA axis in an immune rheostat-like fashion.


Asunto(s)
Linfocitos T CD8-positivos , Hepatitis B Crónica , Hígado , Animales , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Hepatocitos/inmunología , Hepatocitos/virología , Hígado/inmunología , Hígado/virología , Fosforilación , Transducción de Señal , Activación de Linfocitos
2.
Anal Chem ; 95(20): 8054-8062, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37167069

RESUMEN

Detecting breast tumor markers with a fast turnaround time from frozen sections should foster intraoperative histopathology in breast-conserving surgery, reducing the need for a second operation. Hence, rapid label-free discrimination of the spatially resolved molecular makeup between cancer and adjacent normal breast tissue is of growing importance. We performed desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of fresh-frozen excision specimens, including cancer and paired adjacent normal sections, obtained from the lumpectomy of 73 breast cancer patients. The results demonstrate that breast cancer tissue posits sharp metabolic upregulation of diacylglycerol, a lipid second messenger that activates protein kinase C for promoting tumor growth. We identified four specific sn-1,2-diacylglycerols that outperformed all other lipids simultaneously mapped by the positive ion mode DESI-MSI for distinguishing cancers from adjacent normal specimens. This result contrasts with several previous DESI-MSI studies that probed metabolic dysregulation of glycerophospholipids, sphingolipids, and free fatty acids for cancer diagnoses. A random forest-based supervised machine learning considering all detected ion signals also deciphered the highest diagnostic potential of these four diacylglycerols with the top four importance scores. This led us to construct a classifier with 100% overall prediction accuracy of breast cancer by using the parsimonious set of four diacylglycerol biomarkers only. The metabolic pathway analysis suggested that increased catabolism of phosphatidylcholine in breast cancer contributes to diacylglycerol overexpression. These results open up opportunities for mapping diacylglycerol signaling in breast cancer in the context of novel therapeutic and diagnostic developments, including the intraoperative assessment of breast cancer margin status.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/metabolismo , Mastectomía Segmentaria , Diglicéridos , Espectrometría de Masa por Ionización de Electrospray/métodos , Biomarcadores de Tumor/análisis
3.
J Proteome Res ; 22(3): 967-976, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696358

RESUMEN

Nephrotic syndrome (NS) is classified based on morphological changes of glomeruli in biopsied kidney tissues evaluated by time-consuming microscopy methods. In contrast, we employed desorption electrospray ionization mass spectrometry (DESI-MS) directly on renal biopsy specimens obtained from 37 NS patients to rapidly differentiate lipid profiles of three prevalent forms of NS: IgA nephropathy (n = 9), membranous glomerulonephritis (n = 7), and lupus nephritis (n = 8), along with other types of glomerular diseases (n = 13). As we noted molecular heterogeneity in regularly spaced renal tissue regions, multiple sections from each biopsy specimen were collected, providing a total of 973 samples for investigation. Using multivariate analysis, we report differential expressions of glycerophospholipids, sphingolipids, and glycerolipids among the above four classes of NS kidneys, which were otherwise overlooked in several past studies correlating lipid abnormalities with glomerular diseases. We developed machine learning (ML) models with the top 100 features using the support vector machine, which enabled us to discriminate the concerned glomerular diseases with 100% overall accuracy in the training, validation, and holdout test set. This DESI-MS/ML-based tissue analysis can be completed in a few minutes, in sharp contrast to a daylong procedure followed in the conventional histopathology of NS.


Asunto(s)
Nefritis Lúpica , Síndrome Nefrótico , Humanos , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/patología , Espectrometría de Masa por Ionización de Electrospray/métodos , Riñón/química , Glicerofosfolípidos , Nefritis Lúpica/patología , Biopsia
4.
ACS Chem Neurosci ; 12(21): 4187-4194, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34657435

RESUMEN

Temporal lobe epilepsy (TLE) is the most prevalent form of human epilepsy, often accompanied by neurodegeneration in the hippocampus. Like other neurological diseases, TLE is expected to disrupt lipid homeostasis. However, the lipid architecture of the human TLE brain is relatively understudied, and the molecular mechanism of epileptogenesis is poorly understood. We performed desorption electrospray ionization mass spectrometry imaging of 39 fresh frozen surgical specimens of the human hippocampus to investigate lipid profiles in TLE with hippocampal sclerosis (n = 14) and control (non-TLE; n = 25) groups. In contrast to several previous studies on animal models of epilepsy, we report reduced expression of various important lipids, notably phosphatidylcholine (PC) and phosphatidylethanolamine (PE), in the human TLE hippocampus. In addition, metabolic pathway analysis suggested the possible dysregulation of the Kennedy pathway in TLE, resulting in striking reductions of PC and PE levels. This revelation opens up opportunities to further investigate the associated molecular mechanisms and possible therapeutic targets for TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Hipocampo , Humanos , Metabolismo de los Lípidos , Imagen por Resonancia Magnética , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA