Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 15(733): eabj8204, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536884

RESUMEN

Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropéptidos , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/farmacología , Animales , Calcitonina/metabolismo , Calcitonina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Neuropéptidos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología
2.
Exp Mol Med ; 54(4): 393-402, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35474339

RESUMEN

The hypothalamus is a central regulator of body weight and energy homeostasis. There is increasing evidence that innate immune activation in the mediobasal hypothalamus (MBH) is a key element in the pathogenesis of diet-induced obesity. Microglia, the resident immune cells in the brain parenchyma, have been shown to play roles in diverse aspects of brain function, including circuit refinement and synaptic pruning. As such, microglia have also been implicated in the development and progression of neurological diseases. Microglia express receptors for and are responsive to a wide variety of nutritional, hormonal, and immunological signals that modulate their distinct functions across different brain regions. We showed that microglia within the MBH sense and respond to a high-fat diet and regulate the function of hypothalamic neurons to promote food intake and obesity. Neurons, glia, and immune cells within the MBH are positioned to sense and respond to circulating signals that regulate their capacity to coordinate aspects of systemic energy metabolism. Here, we review the current knowledge of how these peripheral signals modulate the innate immune response in the MBH and enable microglia to regulate metabolic control.


Asunto(s)
Hipotálamo , Obesidad , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Inmunidad Innata , Microglía/metabolismo , Obesidad/metabolismo
3.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615086

RESUMEN

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo Beige/metabolismo , Metabolismo Energético/genética , Quinasa 1 de Adhesión Focal/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Tetraspanina 28/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Beige/citología , Tejido Adiposo Beige/crecimiento & desarrollo , Tejido Adiposo Blanco/metabolismo , Adulto , Animales , Ataxina-1/metabolismo , Femenino , Fibronectinas/farmacología , Quinasa 1 de Adhesión Focal/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Resistencia a la Insulina/genética , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual , Células Madre/citología , Tetraspanina 28/genética
4.
J Biol Chem ; 294(23): 9213-9224, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31053639

RESUMEN

Chronic or excess glucocorticoid exposure causes lipid disorders such as hypertriglyceridemia and hepatic steatosis. Angptl4 (angiopoietin-like 4), a primary target gene of the glucocorticoid receptor in hepatocytes and adipocytes, is required for hypertriglyceridemia and hepatic steatosis induced by the synthetic glucocorticoid dexamethasone. Angptl4 has also been shown to be required for dexamethasone-induced hepatic ceramide production. Here, we further examined the role of ceramide-mediated signaling in hepatic dyslipidemia caused by chronic glucocorticoid exposure. Using a stable isotope-labeling technique, we found that dexamethasone treatment induced the rate of hepatic de novo lipogenesis and triglyceride synthesis. These dexamethasone responses were compromised in Angptl4-null mice (Angptl4-/-). Treating mice with myriocin, an inhibitor of the rate-controlling enzyme of de novo ceramide synthesis, serine palmitoyltransferase long-chain base subunit 1 (SPTLC1)/SPTLC2, decreased dexamethasone-induced plasma and liver triglyceride levels in WT but not Angptl4-/- mice. We noted similar results in mice infected with adeno-associated virus-expressing small hairpin RNAs targeting Sptlc2. Protein phosphatase 2 phosphatase activator (PP2A) and protein kinase Cζ (PKCζ) are two known downstream effectors of ceramides. We found here that mice treated with an inhibitor of PKCζ, 2-acetyl-1,3-cyclopentanedione (ACPD), had lower levels of dexamethasone-induced triglyceride accumulation in plasma and liver. However, small hairpin RNA-mediated targeting of the catalytic PP2A subunit (Ppp2ca) had no effect on dexamethasone responses on plasma and liver triglyceride levels. Overall, our results indicate that chronic dexamethasone treatment induces an ANGPTL4-ceramide-PKCζ axis that activates hepatic de novo lipogenesis and triglyceride synthesis, resulting in lipid disorders.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Ceramidas/metabolismo , Dexametasona/toxicidad , Hígado/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteína 4 Similar a la Angiopoyetina/deficiencia , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Hígado Graso/etiología , Hígado Graso/metabolismo , Hipertrigliceridemia/etiología , Hipertrigliceridemia/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa C/antagonistas & inhibidores , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...