Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 509(1): 131-4, 2001 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11734220

RESUMEN

The human gene frataxin and its yeast homolog YFH1 affect mitochondrial function. Deficits in frataxin result in Friedreich ataxia, while deletion of YFH1 results in respiratory incompetence. We determined that as long as respiratory incompetent yeast express Yfh1p they do not accumulate excessive mitochondrial iron. Deletion of YFH1 in respiratory incompetent yeast results in mitochondrial iron accumulation, while the reintroduction of Yfh1p results in mitochondrial iron export. Further, overexpression of Yfh1p has no effect on oxygen consumption in wild-type yeast grown in either fermentative or respiratory carbon sources. We conclude that the effect of Yfh1p on mitochondrial iron metabolism is independent of respiratory activity.


Asunto(s)
Proteínas de Unión a Hierro , Hierro/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/metabolismo , Inhibidores Enzimáticos/farmacología , Etidio/farmacología , Colorantes Fluorescentes/farmacología , Eliminación de Gen , Oxígeno/metabolismo , Plásmidos/metabolismo , Fracciones Subcelulares , Frataxina
2.
J Biol Chem ; 276(31): 29515-9, 2001 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-11390404

RESUMEN

The budding yeast Saccharomyces cerevisiae can grow for generations in the absence of exogenous iron, indicating a capacity to store intracellular iron. As cells can accumulate iron by endocytosis we studied iron metabolism in yeast that were defective in endocytosis. We demonstrated that endocytosis-defective yeast (Delta end4) can store iron in the vacuole, indicating a transfer of iron from the cytosol to the vacuole. Using several different criteria we demonstrated that CCC1 encodes a transporter that effects the accumulation of iron and Mn(2+) in vacuoles. Overexpression of CCC1, which is localized to the vacuole, lowers cytosolic iron and increases vacuolar iron content. Conversely, deletion of CCC1 results in decreased vacuolar iron content and decreased iron stores, which affect cytosolic iron levels and cell growth. Furthermore Delta ccc1 cells show increased sensitivity to external iron. The sensitivity to iron is exacerbated by ectopic expression of the iron transporter FET4. These results indicate that yeast can store iron in the vacuole and that CCC1 is involved in the transfer of iron from the cytosol to the vacuole.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte de Catión , División Celular , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Citosol/metabolismo , Cartilla de ADN , Eliminación de Gen , Genes Reporteros , Cinética , Manganeso/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , beta-Galactosidasa/metabolismo
3.
J Biol Chem ; 275(11): 7626-32, 2000 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-10713071

RESUMEN

Deletion of YFH1 in Saccharomyces cerevisiae leads to a loss of respiratory competence due to excessive mitochondrial iron accumulation. A suppressor screen identified a gene, CCC1, that maintained respiratory function in a Deltayfh1 yeast strain regardless of extracellular iron concentration. CCC1 expression prevented excessive mitochondrial iron accumulation by limiting mitochondrial iron uptake rather than by increasing mitochondrial iron egress. Expression of CCC1 did not result in sequestration of iron in membranous compartments or cellular iron export. CCC1 expression in wild type cells resulted in increased expression of the high affinity iron transport system composed of FET3 and FTR1, suggesting that intracellular iron is not sensed by the iron-dependent transcription factor Aft1p. Introduction of AFT1(up), a constitutive allele of the iron transcription factor, AFT1, that also leads to increased high affinity iron transport did not prevent Deltayfh1 cells from becoming respiratory-incompetent. Although the mechanism by which CCC1 expression affects cytosolic iron is not known, the data suggest that excessive mitochondrial iron accumulation only occurs when cytosolic free iron levels are high.


Asunto(s)
Ataxia de Friedreich/etiología , Proteínas Fúngicas/genética , Hierro/metabolismo , Mitocondrias/patología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Transporte Biológico , Proteínas de Transporte de Catión , Citosol/metabolismo , Proteínas Fúngicas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Consumo de Oxígeno , Supresión Genética , Factores de Transcripción/metabolismo
4.
J Nutr ; 128(3): 525-35, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9482759

RESUMEN

Iron regulatory protein 1 (IRP1) and IRP2 are cytoplasmic RNA binding proteins that are central regulators of mammalian iron homeostasis. We investigated the time-dependent effect of dietary iron deficiency on liver IRP activity in relation to the abundance of ferritin and the iron-sulfur protein mitochondrial aconitase (m-acon), which are targets of IRP action. Rats were fed a diet containing 2 or 34 mg iron/kg diet for 1-28 d. Liver IRP activity increased rapidly in rats fed the iron-deficient diet with IRP1 stimulated by d 1 and IRP2 by d 2. The maximal activation of IRP2 was five-fold (d 7) and three-fold (d 4) for IRP1. By d 4, liver ferritin subunits were undetectable and m-acon abundance eventually fell by 50% (P < 0.05) in iron-deficient rats. m-Acon abundance declined most rapidly from d 1 to 11 and in a manner that was suggestive of a cause and effect type of relationship between IRP activity and m-acon abundance. In liver, iron deficiency did not decrease the activity of cytosolic aconitase, catalase or complex I of the electron transport chain nor was there an effect on the maximal rate of mitochondrial oxygen consumption with the use of malate and pyruvate as substrates. Thus, the decline in m-acon abundance in iron deficiency is not reflective of a global decrease in liver iron-sulfur proteins nor does it appear to limit ATP production. Our results suggest a novel role for m-acon in cellular iron metabolism. We conclude that, in liver, iron deficiency preferentially affects the activities of IRPs and the targets of IRP action.


Asunto(s)
Aconitato Hidratasa/metabolismo , Ferritinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/administración & dosificación , Hígado/metabolismo , Mitocondrias Hepáticas/enzimología , Proteínas de Unión al ARN/metabolismo , Animales , Dieta , Hemoglobinas/análisis , Hierro/farmacología , Proteína 1 Reguladora de Hierro , Proteína 2 Reguladora de Hierro , Proteínas Reguladoras del Hierro , Masculino , Mitocondrias Hepáticas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Ratas/genética , Ratas Sprague-Dawley , Proteína wnt2
5.
J Biol Chem ; 273(6): 3740-6, 1998 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-9452506

RESUMEN

Utilization of mRNAs containing iron-responsive elements (IREs) is modulated by iron-regulated RNA-binding proteins (iron regulatory proteins). We examine herein whether iron differentially affects translation of ferritin and mitochondrial aconitase (m-Acon) mRNAs because they contain a similar but not identical IRE in their 5'-untranslated regions. First, we demonstrate that m-Acon synthesis is iron-regulated in mammalian cells. In HL-60 cells, hemin (an iron source) stimulated m-Acon synthesis 3-fold after 4 h compared with cells treated with an iron chelator (Desferal). Furthermore, hemin stimulated m-Acon synthesis 2-4-fold in several cell lines. Second, we show that iron modulates the polysomal association of m-Acon mRNA. We observed m-Acon mRNA in both ribonucleoprotein and polyribosomal fractions of HL-60 cells. Hemin significantly increased the polyribosomal association and decreased the ribonucleoprotein abundance of m-Acon mRNA in HL-60 cells. Third, our results indicate that iron differentially regulates translation of m-Acon and ferritin mRNAs. A dose response to hemin in HL-60 cells elicited a 2-2.4-fold increase in m-Acon synthesis within 5 h compared with untreated cells, whereas ferritin synthesis was stimulated 20-100-fold. We conclude that iron modulates m-Acon synthesis at the translational level and that iron regulatory proteins appear to differentially affect translation of IRE-containing mRNAs.


Asunto(s)
Aconitato Hidratasa/genética , Ferritinas/genética , Hierro/farmacología , Mitocondrias/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , Aconitato Hidratasa/biosíntesis , Animales , Células Cultivadas , Citratos/metabolismo , Mitocondrias/enzimología , Ratas , Células Tumorales Cultivadas
6.
Proc Natl Acad Sci U S A ; 94(20): 10681-6, 1997 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-9380695

RESUMEN

Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5' or 3' untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis.


Asunto(s)
Linfocitos B/metabolismo , Proteínas de Unión a Hierro , Proteínas Hierro-Azufre/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Superficie Celular/genética , Receptores de Transferrina/genética , Animales , Línea Celular , Regulación de la Expresión Génica , Proteína 1 Reguladora de Hierro , Proteína 2 Reguladora de Hierro , Proteínas Reguladoras del Hierro , Proteínas Hierro-Azufre/biosíntesis , Ratones , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/biosíntesis
7.
Biochemistry ; 36(13): 3950-8, 1997 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-9092825

RESUMEN

Iron regulatory protein 1 (IRP1) modulates iron metabolism by binding to mRNAs encoding proteins involved in the uptake, storage, and metabolic utilization of iron. Iron regulates IRP1 function by promoting assembly of an iron-sulfur cluster in the apo or RNA binding form, thereby converting it to the active holo or cytoplasmic aconitase form. In continuing our studies on phosphoregulation of IRP1 by protein kinase C (PKC), we noted that the purified apoprotein was more efficiently phosphorylated than was the form partially purified from liver cytosol by chromatography on DEAE-Sepharose which had characteristics of the [3Fe-4S] form of the protein. RNA binding measurements revealed a 20-fold increase in RNA binding affinity and a 4-5-fold higher rate of phosphorylation after removal of the Fe-S cluster from the highly purified [4Fe-4S] form. Phosphorylation of apo-IRP1 by PKC was specifically inhibited by IRE-containing RNA. The RNA binding form had a more open structure as judged by its much greater sensitivity to limited cleavage by a number of proteases. N-Terminal sequencing of chymotryptic peptides of apo-IRP1 demonstrated an increased accessibility to proteolysis of sites (residues 132 and 504) near or within the putative cleft of the protein, including regions that are thought to be involved in RNA binding (residues 116-151) and phosphoregulation (Ser 138). Enhanced cleavage was also observed in the proposed hinge linker region (residue 623) on the surface of the protein opposite from the cleft. Taken together, our results indicate that significant structural changes occur in IRP1 during cluster insertion or removal that affect the accessibility to RNA binding and phosphorylation sites.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Aconitato Hidratasa/metabolismo , Animales , Apoproteínas/metabolismo , Bovinos , Quimotripsina/metabolismo , Electroforesis en Gel de Poliacrilamida , Hierro/química , Hierro/farmacología , Proteína 1 Reguladora de Hierro , Proteínas Reguladoras del Hierro , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/farmacología , Cinética , Hígado/metabolismo , Mercaptoetanol/farmacología , Péptidos/química , Fosforilación , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/farmacología , Ratas , Azufre/química
8.
J Nutr ; 127(2): 238-48, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9039823

RESUMEN

Iron regulatory protein 1 (IRP1) and IRP2 are cytoplasmic RNA binding proteins that coordinate cellular iron homeostasis in mammals. We investigated the effect of dietary iron intake on rat liver IRP activity in relation to the abundance of two targets of IRP action, ferritin and mitochondrial aconitase (m-aconitase). Rats were fed diets containing 2, 11, 20, 37 (control), 72 or 107 mg iron/kg diet for 3 wk. RNA binding activity of IRP1 and IRP2 was enhanced one- to twofold in rats fed 11 or 2 mg iron/kg diet compared with control rats. IRP RNA binding activity was inversely correlated to blood hemoglobin levels (r = -0.787; P < 0.0001). Compared with control rats, liver ferritin levels were depressed in rats fed 20 mg iron/kg diet and were undetectable in rats ingesting diets with 11 or 2 mg iron/kg diet. Ferritin concentrations were biphasically related to IRP RNA binding activity with the regulation of IRP occurring before the onset of ferritin accumulation. Iron deficiency caused up to a 50% decline in m-aconitase abundance. IRP RNA binding activity and m-aconitase abundance were inversely correlated (r = -0.751; P < 0.0001). Our results indicate that (1) liver IRP activity is responsive to a range of dietary iron levels, (2) there appears to be a differential effect of IRPs on ferritin and m-aconitase abundance, and (3) activation of IRPs may contribute to the alterations in energy metabolism in iron deficiency through an impairment of m-aconitase synthesis.


Asunto(s)
Aconitato Hidratasa/metabolismo , Ferritinas/metabolismo , Hierro de la Dieta/administración & dosificación , Proteínas Hierro-Azufre/metabolismo , Hígado/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Citosol/enzimología , Eritrocitos/metabolismo , Hemoglobinas/análisis , Deficiencias de Hierro , Proteína 1 Reguladora de Hierro , Proteína 2 Reguladora de Hierro , Hierro de la Dieta/farmacología , Proteínas Reguladoras del Hierro , Proteínas Hierro-Azufre/sangre , Hígado/enzimología , Masculino , Mitocondrias Hepáticas/enzimología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/sangre , Ratas , Ratas Sprague-Dawley , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...