Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Breed ; 43(8): 62, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37521314

RESUMEN

Heading date is a critical agronomic trait that determines crop yield. Although numerous genes associated with heading date have been identified in rice, the mechanisms involving Small Auxin Up RNA (SAUR) family have not been elucidated. In this study, the biological function of several SAUR genes was initially investigated using the CRISPR-Cas9 technology in the Japonica cultivar Zhonghua11 (ZH11) background. Further analysis revealed that the loss-of-function of OsSAUR56 affected heading date in both NLD (natural long-day) and ASD (artificial short-day). OsSAUR56 exhibited predominant expression in the anther, with its protein localized in both the cytoplasm and nucleus. OsSAUR56 regulated flowering time and heading date by modulating the expression of the clock gene OsGI, as well as two repressors Ghd7 and DTH8. Furthermore, haplotype-phenotype association analysis revealed a strong correlation between OsSAUR56 and heading date, suggesting its role in selection during the domestication of rice. In summary, these findings highlights the importance of OsSAUR56 in the regulation of heading date for further potential facilitating genetic engineering for flowering time during rice breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01409-w.

2.
Plants (Basel) ; 12(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050133

RESUMEN

The plant architecture of rice is an important factor affecting yield. Strigolactones (SLs) are newly discovered carotenoid-derived plant hormones that play an important role in rice plant architecture. In this study, a high-tillering dwarf mutant, CHA-1, was identified by spatial mutagenesis. CHA-1 was located in the region of 31.52-31.55 MB on chromosome 1 by map-based cloning. Compared with the wild-type THZ, the CHA-1 mutant showed that ACCAC replaced TGGT in the coding region of the candidate gene LOC_Os01g54810, leading to premature termination of expression. Genetic complementation experiments proved that LOC_Os01g54810 was CHA-1, which encodes a putative member of Class III lipase. Expression analysis showed that CHA-1 was constitutively expressed in various organs of rice. Compared with those in THZ, the expression levels of the D17 and D10 genes were significantly downregulated in the CHA-1 mutant. In addition, the concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS) in the root exudates of the CHA-1 mutant was significantly reduced compared with that of THZ, and exogenous application of GR24 inhibited the tillering of the CHA-1 mutant. These results suggest that CHA-1 influences rice architecture by affecting SL biosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA