Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134462

RESUMEN

AIM: This nationwide cohort study evaluated the impact of sodium-glucose co-transporter-2 inhibitors (SGLT2i) on patients with type 2 diabetes mellitus (T2DM) after ischaemic stroke (IS), aiming to compare clinical outcomes between SGLT2i-treated patients and those not receiving SGLT2i. MATERIALS AND METHODS: Utilizing Taiwan's National Health Insurance Research Database, we identified 707 patients with T2DM treated with SGLT2i and 27 514 patients not treated with SGLT2i after an IS, respectively, from 1 May 2016 to 31 December 2019. Propensity score matching was applied to balance baseline characteristics. The follow-up period extended from the index date (3 months after the index acute IS) until the independent occurrence of the study outcomes, 6 months after discontinuation of the index drug, or the end of the study period (31 December 2020), whichever came first. RESULTS: After propensity score matching, compared with the non-SGLT2i group (n = 2813), the SGLT2i group (n = 707) exhibited significantly lower recurrent IS rates (3.605% per year vs. 5.897% per year; hazard ratio: 0.55; 95% confidence interval: 0.34-0.88; p = 0.0131) and a significant reduction in all-cause mortality (5.396% per year vs. 7.489% per year; hazard ratio: 0.58; 95% confidence interval: 0.39-0.85; p = 0.0058). No significant differences were observed in the rates of acute myocardial infarction, cardiovascular death, heart failure hospitalization, or lower limb amputation. CONCLUSIONS: Our findings indicate significantly lower risks of recurrent IS and all-cause mortality among patients with T2DM receiving SGLT2i treatment. Further studies are required to validate these results and investigate the underlying mechanisms behind the observed effects.

2.
Int J Biol Macromol ; 237: 124047, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933598

RESUMEN

Rheumatoid arthritis (RA) is a common systemic autoimmune disease in developed countries. In clinical treatment, steroids have been used as bridging and adjunctive therapy after disease-modifying anti-rheumatic drug administration. However, the severe side effects caused by the nonspecific targeting of organs followed by long-term administration have limited their usage in RA. In this study, poorly water-soluble triamcinolone acetonide (TA), a highly potent corticosteroid for intra-articular injection, is conjugated on hyaluronic acid (HA) for intravenous purposes with increased specific drug accumulation in inflamed parts for RA. Our results demonstrate that the designed HA/TA coupling reaction reveals >98 % conjugation efficiency in the dimethyl sulfoxide/water system, and the resulting HA-TA conjugates show lower osteoblastic apoptosis compared with that in free TA-treated osteoblast-like NIH3T3 cells. Furthermore, in a collagen-antibody-induced arthritis animal study, HA-TA conjugates enhanced the initiative targeting ability to inflame tissue and reduce the histopathological arthritic changes (score = 0). Additionally, the level of bone formation marker P1NP in HA-TA-treated ovariectomized mice (303.6 ± 40.6 pg/mL) is significantly higher than that in the free TA-treated group (143.1 ± 3.9 pg/mL), indicating the potential for osteoporotic reduction using an efficient HA conjugation strategy for the long-term administration of steroids against RA.


Asunto(s)
Artritis Reumatoide , Triamcinolona Acetonida , Ratones , Animales , Triamcinolona Acetonida/farmacología , Triamcinolona Acetonida/uso terapéutico , Ácido Hialurónico/farmacología , Células 3T3 NIH , Artritis Reumatoide/tratamiento farmacológico , Inyecciones Intraarticulares
3.
J Colloid Interface Sci ; 608(Pt 1): 493-503, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626991

RESUMEN

Zeolitic imidazolate framework-67 (ZIF67) derivatives are considered as promising active materials for energy storage owing to the possible formation of cobalt oxide and N-doped graphite. Cobalt oxide has multiple redox states for generating redox reactions for charge storage, while N-doped graphite can provide high electrical conductivity for charge transfer. In this study, it is the first time to synthesize binder-free electrodes composed of cobalt oxide and N-doped graphite derived from ZIF67 on carbon cloth (CC) for supercapacitor (SC). Successive oxidation and carbonization along with additional coverage of ZIF67 derivatives are applied to synthesize ZIF67 derivatives composed of cobalt oxide, N-doped graphite and cobalt oxide/N-doped graphite composites with different layer compositions. The highest specific capacitance (CF) of 90.0F/g at 20 mV/s is obtained for the oxidized ZIF67/carbonized ZIF67/carbon cloth (O67/C67/CC) electrode, due to the large surface area and high electrical conductivity benefitted from preferable morphology and growing sequence of Co3O4 and N-doped graphite. The symmetric SC composed of O67/C67/CC electrodes shows the maximum energy density of 2.53 Wh/kg at the power density of 50 W/kg. Cycling stability with CF retention of 70% and Coulombic efficiency of 65% after 6000 times repeatedly charge/discharge process is also obtained for this symmetric SC.

4.
Pharmaceutics ; 13(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34683862

RESUMEN

Clinical cases of allergic reaction that are due to excipients containing polyethylene glycol (PEG), a hydrophilic molecule commonly used in drug/vaccine formulations, has attracted much attention in recent years. In order to develop PEG-free adjuvants, we investigated the feasibility of natural ingredients in the human body such as hyaluronic acid in the form of hyaluronic acid-glycine cholesterol (HACH) conjugate as an excipient for vaccine formulation. Interestingly, HACH grafted with ~13 wt.% cholesterol has good water dispersity and can serve as an emulsifier to stabilize the squalene/water interfaces, yielding a milky white and isotropic emulsion (SQ@HACH) after being passed through a high-shear microfluidizer. Our results show that SQ@HACH particles possessed a unimodal average hydrodynamic diameter of approximately 190 nm measured by dynamic light scattering and exhibited good stability upon storage at 4 °C and 37 °C for over 20 weeks. The results of immunogenicity using a mouse model with ovalbumin (OVA) as the antigen revealed that SQ@HACH significantly enhanced antigen-specific immune responses, including the polarization of IgG antibodies, the cytokine secretions of T cells, and enhancement of cytotoxic T lymphocyte (CTL) activation. Moreover, SQ@HACH revealed lower local inflammation and rapidly absorbing properties compared with AlPO4 after intramuscular injection in vivo, indicating the potential functions of the HA-derived conjugate as an excipient in vaccine formulations for enhancement of T cell-mediated immunity.

5.
Pharmaceutics ; 13(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34575442

RESUMEN

Dry eye syndrome (DES) is a common ocular disease worldwide. Currently, anti-inflammatory agents and immunosuppressive drugs, such as cyclosporine A, have been widely used to treat this chronic condition. However, the multifactorial etiology of DES, poor tolerance, low bioavailability, and prolonged treatment to response time have limited their usage. In this study, nimesulide, a cyclooxygenase (COX)-2 selective inhibitor, was conjugated with hyaluronic acid (HA), and the HA-nimesulide conjugates were expected to increase the solubility and biocompatibility for alleviating the DES in the benzalkonium chloride (BAC)-induced goblet cell-loss dry eye model. The therapeutic efficacy of HA-nimesulide was assessed using fluorescein staining, goblet cell density by conjunctival impression cytology, and histology and immunohistochemistry of corneal tissues. Compared to commercial artificial tears and Restasis®, the HA-nimesulide conjugates could promote goblet cell recovery and enhance the regeneration of the corneal epithelium. Importantly, immunofluorescent staining studies demonstrated that the HA-nimesulide conjugates could decrease the number of infiltrating CD11b-positive cells after two weeks of topical application. In the anti-inflammatory test, the HA-nimesulide conjugates could inhibit the production of pro-inflammatory cytokines and prostaglandin E2 (PGE2) in the lipopolysaccharide (LPS)-stimulated Raw 264.7 cell model. In conclusion, we demonstrated that HA-nimesulide conjugates had anti-inflammatory activity, and promoted goblet cell recovery and corneal epithelium regeneration when used as topical eye drops; accordingly, the HA-nimesulide conjugates could potentially be effective for the treatment of DES.

6.
Bioresour Technol ; 267: 642-649, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30059944

RESUMEN

Anaerobic processes have been applied to treat low-strength domestic wastewaters with significant energy saving. However, anaerobic process effluents must be further removed of residual organics and total nitrogen before discharge. Reported here are an aerobic entrapped bio-technology (EBT) system and an EBT coupled with activated sludge (EBT + AS) system being tested as a post-anaerobic treatment. Both systems have been operated under aerobic condition to provide organics and total nitrogen removal, achieving COD removal by 74-88% and TN removal by 58-65% at hydraulic retention times of 8-24 h. ΔCOD/ΔNO3 ratios that represent the carbon usage efficiency as electron donors for denitrification were 1.82-1.93 in the EBT and 2.01-2.02 in the EBT + AS systems, with both ratios being lower (i.e. more efficient) than 6 typically required in traditional activated sludge bioreactors. Both systems demonstrate promise for polishing removal of COD and TN.


Asunto(s)
Reactores Biológicos , Desnitrificación , Eliminación de Residuos Líquidos , Biomasa , Nitrógeno , Aguas del Alcantarillado
7.
PLoS One ; 4(9): e7248, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19789629

RESUMEN

BACKGROUND: Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essential for stabilizing the MeP transition state. Topoisomerase or its R223A variant promotes cleavage of the MeP bond by the active site nucleophile Tyr-274, followed by the rapid hydrolysis of the MeP-tyrosyl intermediate. Flp(R308A), but not wild type Flp, mediates direct hydrolysis of the activated MeP bond. These findings are consistent with a potential role for phosphate electrostatics and active site electrostatics in protecting DNA relaxation and site-specific recombination, respectively, against abortive hydrolysis. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the effects of DNA containing MeP substitution in the Flp related Cre recombination system. Neutralizing the negative charge at the scissile position does not render the tyrosyl intermediate formed by Cre susceptible to rapid hydrolysis. Furthermore, combining the active site R292A mutation in Cre (equivalent to the R223A and R308A mutations in topoisomerase and Flp, respectively) with MeP substitution does not lead to direct hydrolysis of the scissile MeP bond in DNA. Whereas Cre follows the topoisomerase paradigm during the strand cleavage step, it follows the Flp paradigm during the strand joining step. CONCLUSIONS/SIGNIFICANCE: Collectively, the Cre, Flp and topoisomerase results highlight the contribution of conserved electrostatic complementarity between substrate and active site towards transition state stabilization during site-specific recombination and DNA relaxation. They have potential implications for how transesterification reactions in nucleic acids are protected against undesirable abortive side reactions. Such protective mechanisms are significant, given the very real threat of hydrolytic genome damage or disruption of RNA processing due to the cellular abundance and nucleophilicity of water.


Asunto(s)
ADN Nucleotidiltransferasas/metabolismo , ADN-Topoisomerasas/química , ADN/química , Integrasas/metabolismo , Organofosfonatos/química , Virus Vaccinia/enzimología , Alanina/química , Arginina/química , Dominio Catalítico , Escherichia coli/metabolismo , Variación Genética , Hidrólisis , Modelos Biológicos , Electricidad Estática , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA