Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.049
Filtrar
1.
Gene ; 930: 148864, 2024 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-39151674

RESUMEN

The NYN domain gene family consists of genes that encode ribonucleases that are characterized by a newly identified NYN domain. Members of the family were widely distributed in all life kingdoms and play a crucial role in various RNA regulation processes, although the wide genome overview of the NYN domain gene family is not yet available in any species. Rapeseed (Brassica napus L.), a polyploid model species, is an important oilseed crop. Here, the phylogenetic analysis of these BnaNYNs revealed five distinct groups strongly supported by gene structure, conserved domains, and conserved motifs. The survey of the expansion of the gene family showed that the birth of BnaNYNs is explained by various duplication events. Furthermore, tissue-specific expression analysis, protein-protein interaction prediction, and cis-element prediction suggested a role for BnaNYNs in plant growth and development. Interestingly, the data showed that three tandem duplicated BnaNYNs (TDBs) exhibited distinct expression patterns from those other BnaNYNs and had a high similarity in protein sequence level. Furthermore, the analysis of one of these TDBs, BnaNYN57, showed that overexpression of BnaNYN57 in Arabidopsis thaliana and B. napus accelerated plant growth and significantly increased silique length, while RNA interference resulted in the opposite growth pattern. It suggesting a key role for the TDBs in processes related to plant growth and development.


Asunto(s)
Brassica napus , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Desarrollo de la Planta/genética , Duplicación de Gen , Dominios Proteicos
2.
Drug Discov Today ; 29(10): 104142, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168405

RESUMEN

Currently, various antimitotic inhibitors applied in tumor therapy. However, these inhibitors exhibit targeted toxicity to some extent. As a motor protein, kinesin family member 18A (KIF18A) is crucial to spindle formation and is associated with tumors exhibiting ploidy-specific characteristics such as chromosomal aneuploidy, whole-genome doubling (WGD), and chromosomal instability (CIN). Differing from traditional antimitotic targets, KIF18A exhibits tumor-specific selectivity. The functional loss or attenuation of KIF18A results in vulnerability of tumor cells with ploidy-specific characteristics, with lesser effects on diploid cells. Research on inhibitors targeting KIF18A with ploidy-specific lethality holds significant importance. This review provides a brief overview of the regulatory mechanisms of the ploidy-specific lethality target KIF18A and the research advancements in its inhibitors, aiming to facilitate the development of KIF18A inhibitors.

3.
Mol Cell Biochem ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107573

RESUMEN

Ventricular septal defect (VSD) is the most common type of congenital heart disease. HAND1 gene plays a crucial role in the development of the heart, but the role of the variants in the HAND1 gene promoter region in patients with VSD has not been explored yet. From 588 participants (300 with isolated and sporadic VSD and 288 healthy controls), DNA was extracted from blood samples. Variants at the HAND1 gene promoter region were analyzed through Sanger sequencing. Subsequently, cell functional validation was conducted through cell experiments, including dual-luciferase reporter gene analysis, electrophoretic mobility shift analysis, and bioinformatics analysis was also conducted. The promoter region of HAND1 gene had a total of 9 identified variant sites. Among them, 4 variants were exclusively found in VSD patients, and 1 variant (g.3631A>C) was newly discovered. Cell functional experiments indicated that all four variants decreased the transcriptional activity of HAND1 gene promoter with three of them reached statistical significance (p < 0.05). Subsequent analysis using JASPAR (a transcription factor binding profile database) suggests that these variants may alter the binding sites of transcription factors, potentially contributing to the formation of VSD. Our study for the first time identified variants in the promoter region of HAND1 gene in Chinese patients with isolated and sporadic VSD. These variants significantly decreased the expression of HAND1 gene, impacting transcription factor binding sites, and thereby demonstrating pathogenicity. This study offers new insights into the role of HAND1 gene promoter region, contributing to a better understanding of the genetic basis of VSD formation.

4.
Hum Genet ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110251

RESUMEN

Any opacification of the lens can be defined as cataracts, and lens epithelium cells play a crucial role in guaranteeing lens transparency by maintaining its homeostasis. Although several causative genes of congenital cataracts have been reported, the mechanisms underlying lens opacity remain unclear. In this study, a large family with congenital cataracts was collected and genetic analysis revealed a pathological mutation (c.3857 C > T, p.T1287I) in the GBF1 gene; all affected individuals in the family carried this heterozygous mutation, while unaffected family members did not. Functional studies in human lens epithelium cell line revealed that this mutation led to a reduction in GBF1 protein levels. Knockdown of endogenous GBF1 activated XBP1s in the unfolded protein response signal pathway, and enhances autophagy in an mTOR-independent manner. Heterozygous Gbf1 knockout mice also displayed typic cataract phenotype. Together, our study identified GBF1 as a novel causative gene for congenital cataracts. Additionally, we found that GBF1 deficiency activates the unfolded protein response and leads to enhanced autophagy, which may contribute to lens opacity.

5.
Sci Rep ; 14(1): 18232, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107338

RESUMEN

To explore the clinical characteristics of patients infected with SARS-CoV-2 nationwide, especially the effect factors of asymptomatic infection and disappearance of clinical symptoms. A total of 66,448 COVID-19 patients in China who have been diagnosed by nucleic acid test or rapid antigen test were surveyed online (December 24, 2022 to January 16, 2023). Our cross-sectional study used descriptive analyses and binary Logistics regression model to assess the correlation between the clinical characteristics and relative factors, including age, gender, pre-existing conditions, reinfection, vaccination and treatment. A total of 64,515 valid questionnaires were collected. Among included participants, 5969 of which were asymptomatic. The symptoms were mainly upper respiratory symptoms, including dry and itchy throat (64.16%), sore throat (59.95%), hoarseness (57.90%), nasal congestion (53.39%). In binary Logistics regression model, we found that male, no pre-existing conditions, reinfection and vaccination have positive correlations with the appearance of asymptomatic COVID-19 patients. In Cox proportional-hazards regression model, considering all clinical symptoms disappeared in 14 days as outcome, we found that ≤ 60 years old, male, no pre-existing conditions, vaccination and adopted treatment have positive correlations with rapid amelioration of clinical symptoms in COVID-19 patients. The clinical symptoms of the participants were mainly upper respiratory symptoms which were according with the infection of Omicron variant. Factors including age, gender, pre-existing conditions and reinfection could influence the clinical characteristics and prognosis of COVID-19 patients. Importantly, vaccination has positive significance for the prevention and treatment of COVID-19. Lastly, the use of Chinese medicine maybe beneficial to COVID-19 patients, however, reasonable guidance is necessary.


Asunto(s)
Infecciones Asintomáticas , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/diagnóstico , COVID-19/virología , Masculino , Femenino , China/epidemiología , Estudios Transversales , Persona de Mediana Edad , Adulto , Infecciones Asintomáticas/epidemiología , SARS-CoV-2/aislamiento & purificación , Anciano , Adulto Joven , Adolescente
7.
J Magn Reson Imaging ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143028

RESUMEN

BACKGROUND: Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. PURPOSE: To develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom. FIELD STRENGTH/SEQUENCE: 3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement. ASSESSMENT: SCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best). STATISTICAL TESTS: Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant. RESULTS: In simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. DATA CONCLUSION: The proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

8.
Environ Sci Technol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145989

RESUMEN

Water quality criteria (WQC) serve as a scientific foundation for pollutant risk assessment and control in aquatic ecosystems. The development of regionally differentiated WQC tailored to specific regional characteristics has become an emerging trend. However, the current WQC is constrained by a lack of regional species toxicity data. To address these limitations, this study proposes the biological toxicity effect ratio (BER) method, which indirectly reflects the toxicity sensitivity of the overall aquatic ecosystem through the toxicity information on a limited number of species, enabling rapid WQC prediction. Using the established WQC in China and the USA as a case study, we combined mathematical derivation and data validation to evaluate the BER method. Among various species-taxon groups of freshwater organisms, planktonic crustaceans demonstrated the highest predictive accuracy. Our analysis further revealed that species toxicity sensitivity and regional variability jointly influence the prediction accuracy. Regardless of the evaluation indexes, planktonic crustaceans emerged as the most suitable species-taxon group for the BER method. Additionally, the BER method is particularly applicable to pollutants with conserved mechanisms across species. This study systematically explores the feasibility of using the BER method and offers new insights for deriving regionally differentiated WQC.

9.
J Hazard Mater ; 477: 135416, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098197

RESUMEN

The occurrence of chromium picolinate (Cr(pic)3) in environment has attracted raising concerns on its fate and the associated risks. Herein, the photoinduced oxidation of Cr(pic)3 in the presence of ferric ions (Fe(III)) under simulated sunlight and natural solar light irradiation were investigated. Cr(pic)3 was stable under dark or without Fe(III). 87.9 % of Cr(pic)3 (C0 = 1.0 µM) was degraded in the presence of 50 µM Fe(III) after 90 min simulated sunlight irradiation at initial pH of 4.0. •OH was the main cause for Cr(pic)3 oxidation, it attacked the chromium center to generate hexavalent chromium (Cr(VI)) and picolinic acid (k = 5.9 ×108 M-1·s-1). Picolinic acid could be further oxidized to NH4+ and small organics. Relative higher Fe(III) content (25 - 75 µM) and Cr(pic)3 concentration (0.5 - 2.0 µM) promoted both of Cr(pic)3 degradation and Cr(VI) accumulation. While, the degradation of Cr(pic)3 decreased with pH at the range of 3.0 - 8.0, more Cr(VI) was accumulated at pH 5.0 and 6.0. The co-existence of inorganic ions and dissolved organic matter (DOM) in river water inhibited Cr(pic)3 oxidation by scavenging the •OH formed and shielding the light. 8.0 - 16.7 µg/L of Cr(VI) was accumulated after 9.0 h simulated sunlight irradiation of Cr(pic)3 in river water matrix ([Fe(III)]0 = 50 - 100 µM). The generation of Cr(VI) under solar light was slower than that under simulated sunlight due to the weaker light intensity (43.2 - 85.0 mW/cm2 vs. 750 - 1300 mW/cm2). These results consistently suggest photoinduced oxidation of Cr(pic)3 in environment generates the toxic Cr(VI), which deserves significant attention.

10.
J Transl Med ; 22(1): 760, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143479

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common neurogenerative disorder without effective treatments. Defects in mitochondrial complex I are thought to contribute to AD pathogenesis. The aim of this study is to explore whether a novel gene therapy transducing yeast complex I gene NDI1 can be used to treat AD with severely reduced complex I function in cell and animal models. METHODS: The differentiated human neural cells were induced by Aß1-42 to establish the AD cell model, and adeno-associated virus serotype 9 (AAV9) was used to transduce yeast NDI1 into the cell model. Aß1-42 was injected into the hippocampus area of the brain to establish the AD mouse model. AAV9-NDI1 was injected stereotaxically into the hippocampus area to test the therapeutic effect. RESULTS: The expressed yeast complex I had an ameliorating effect on the defective function of human complex I and cellular pathological characteristics in the AD cell model. Furthermore, AAV9-NDI1 gene therapy in the hippocampus had a therapeutic effect on various aspects of mitochondrial function, histopathological characteristics and neurological defects in the AD mouse model. In addition, AAV9-NDI1 injection into the hippocampus of normal mice did not cause any adverse effect. CONCLUSIONS: Compensating mitochondrial complex I function with yeast NDI1 is effective for gene therapy in Aß-induced AD cell and mouse models. The results of this study offer a novel strategy and approach for treating AD types characterized by complex I abnormalities.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón , Terapia Genética , Mitocondrias , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Humanos , Péptidos beta-Amiloides/metabolismo , Mitocondrias/metabolismo , Dependovirus/genética , Hipocampo/patología , Hipocampo/metabolismo , Ratones , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos , Masculino
11.
Chem Biol Drug Des ; 104(2): e14610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160642

RESUMEN

NADPH oxidases (NOXs) are the sole enzyme in the human body that can directly produce reactive oxygen species. Recent studies have shown that NOXs is a very promising target for the treatment of diabetic nephropathy (DN). Here, a series of quinoline(quinolinone) derivatives have been designed based on pharmacophore strategy, synthesized and evaluated. Among them, 19d exhibits potent antiproliferative and NOXs inhibitory activities, and is worthy for further investigation.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , NADPH Oxidasas , Quinolinas , Quinolonas , Humanos , NADPH Oxidasas/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Quinolonas/química , Quinolonas/farmacología , Quinolonas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
12.
J Burn Care Res ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163140

RESUMEN

To study the effect of parecoxib sodium in alleviating inflammation in burned rats and restoring cognitive function in burned rats. 30 SPF grade SD rats were randomly divided into 6 groups: (1) Blank control group (Group C). (2) Sham surgery group (Group Sham). (3) Second-degree burn model (Group B). (4) Low-dose (1 mg/kg/d) parecoxib sodium (Group L+B). (5) Medium-dose (10 mg/kg/d) parecoxib sodium (Group M+B). (6) High-dose (20 mg/kg/d) parecoxib sodium (Group H+B). ELISA measures inflammatory factor IL-2, IL-6, TNF-α and IFN-γ, cognitive function factor NSE, cortisol and S-100ß. Combined with water maze and dark avoidance experiments to further verify the recovery of cognitive function in rats. The contents of IL-2, TNF-α and IL-6 in Group M+B were significantly lower than those in Group Sham (P<0.05), and the content of IFN-γ was significantly lower than that in Group Sham (P<0.05). The cognitive markers NSE, S-100ß and cortisol levels in Group M+B were significantly higher than those in Group Sham at 2h, 1d, 5d and 10d after operation (P<0.05). In the Group M+B dark-avoidance experiment, the number of probes and errors were not significantly different than those in Group Sham and Group C (P>0.05), and the number of times Group M+B found a platform in the water maze experiment and crossed the platform was second only to Group B and Group C. Parecoxib sodium can effectively reduce inflammation in burn rats and promote cognitive recovery in burn rats, and the optimal dose of parecoxib sodium for burn rats is 10 mg/kg.

13.
ACS Nano ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163167

RESUMEN

Fiber-shaped electrochemical capacitors (FSECs) have garnered substantial attention to emerging portable, flexible, and wearable electronic devices. However, achieving high electronic and ionic conductivity in fiber electrodes while maintaining a large specific surface area is still a challenge for enhancing the capacitance and rapid response of FSECs. Here, we present an electric-field-assisted cold-wall plasma-enhanced chemical vapor (EFCW-PECVD) method for direct growth of vertical graphene (VG) on fiber electrodes, which is incorporated in the FSECs. The customized reactor mainly consists of two radio frequency coils: one for plasma generation and the other for substrate heating. Precise temperature control can be achieved by adjusting the conductive plates and the applied power. With induction heating, only the substrate is heated to above 500 °C within just 5 min, maintaining a low temperature in the gas phase for the growth of VG with a high quality. Using this method, VG was easily grown on metallic fibers. The VG-coated titanium fibers for FSECs exhibit an ultrahigh rate performance and quick ion transport, enabling the conversion of an alternating current signal to a direct current signal and demonstrating outstanding filtering capabilities.

14.
Int J Biol Macromol ; 278(Pt 3): 134820, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154695

RESUMEN

Docynia delavayi is an economically significant fruit species with a high market potential due to the special aroma of its fruit. Here, a 653.34 Mb high-quality genome of D. delavayi was first reported, of which 93.8 % of the sequences (612.98 Mb) could be anchored to 17 chromosomes, containing 48,325 protein-coding genes. Ks analysis proved that two whole genome duplication (WGD) events occurred in D. delavayi, resulting in the expansion of genes associated with terpene biosynthesis, which promoted its fruit-specific aroma production. Combined multi-omics analysis, α-farnesene was detected as the most abundant aroma substance emitted by D. delavayi fruit during storage, meanwhile one α-farnesene synthase gene (AFS) and 15 transcription factors (TFs) were identified as the candidate genes potentially involved in α-farnesene biosynthesis. Further studies for the regulation network of α-farnesene biosynthesis revealed that DdebHLH, DdeERF1 and DdeMYB could activate the transcription of DdeAFS. To our knowledge, it is the first report that MYB TF plays a regulatory role in α-farnesene biosynthesis, which will greatly facilitate future breeding programs for D. delavayi.

15.
Nat Commun ; 15(1): 7210, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174536

RESUMEN

Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vice versa, in which specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrate the stable architectures and the high shape retention. Single-channel current recordings and fluorescence influx studies demonstrate the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.


Asunto(s)
ADN , Simulación de Dinámica Molecular , Nanoporos , ADN/química , ADN/metabolismo , Técnicas Biosensibles/métodos , Transporte Biológico , Nanotecnología/métodos , Microscopía Electrónica de Transmisión
16.
Pharmacol Res ; : 107364, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181345

RESUMEN

We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.

17.
J Colloid Interface Sci ; 677(Pt A): 800-811, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39121664

RESUMEN

Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (Ehalf = 0.907 V) and OER (Ej=10 = 1.551 V) within alkaline environments, surpassing esteemed noble metal benchmarks (Pt/C and RuO2). Systematically characterizations and density functional theory (DFT) calculations reveal that the synergistic effect of iron and cobalt bimetallic and the optimized distribution of nitrogen configuration improved the charge distribution of the catalysts, which in turn optimized the adsorption / desorption of oxygenated intermediates accelerating the reaction kinetics. While the unique leaf-like core-shell morphology and excellent pore structure of the FeCo@NC-II catalyst caused the improvement of mass transfer efficiency, electrical conductivity and stability. The core and shell of the precursor constructed through the MOF-on-MOF strategy achieved the effect of 1 + 1 > 2 in mutual cooperation. Further application to zinc-air batteries (ZABs) yielded remarkable power density (212.4 mW/cm2), long cycle (more than 150 h) stability and superior energy density (∼1060 Wh/kg Zn). This work provides a methodology and an idea for the design, synthesis and optimization of advanced bifunctional electrocatalysts.

18.
J Geriatr Oncol ; : 101839, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084925

RESUMEN

INTRODUCTION: Advance care planning (ACP) has been widely endorsed and recommended for its many potential benefits, including improved end-of-life (EOL) care, enhanced satisfaction with care, and reduced anxiety and depression. However, little is known about the ACP completion rates and factors affecting ACP among older adults with cancer. This study's purpose was to examine biological, psychological, and social factors affecting ACP in this population. MATERIALS AND METHODS: Data from the 2002 to 2016 waves of exit interviews from the national longitudinal Health and Retirement Study were analyzed. The sample included 1088 decedents, aged 55 and over, who had a diagnosis of cancer. The exit interviews were completed by a proxy respondent (usually the next of kin of the decedents). ACP outcomes included: having EOL care discussion, durable power of attorney (DPOA), and advance directives (ADs). Multiple logistic regression models were conducted to examine the relationships between predictor variables and each of the three ACP outcome variables. RESULTS: Approximately 65% of the sample had ever discussed EOL care, 61.9% had an assigned DPOA, and 54.1% had ADs. Regression results showed that higher age, Black race, high school and above education, being widowed/never married, higher multimorbidity, and more limitations in activities of daily living and instrumental activities of daily living were significantly associated with the three ACP variables. Surprisingly, Black race was associated with higher odds of ever discussing EOL care and having ADs; high school and above education was associated with lower odds of all three ACP components. DISCUSSION: The majority of participants in this study had discussed EOL care, had an assigned DPOA, and had ADs. However, most participants were White/Caucasian and had completed high school education. Future research that includes more diverse and minoritized participants is needed. Also, the contrasting association of Black race and higher educational status with ACP outcomes warrant further exploration in future studies.

19.
Am J Physiol Renal Physiol ; 327(3): F327-F339, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38961840

RESUMEN

Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.


Asunto(s)
Metilación de ADN , Nefropatías Diabéticas , Epigénesis Genética , Humanos , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/genética
20.
J Hazard Mater ; 476: 135136, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39018597

RESUMEN

This study investigates the effects of chlorine dioxide (ClO2) disinfection on the community structure, regrowth potential, and metabolic product secretion of disinfection-residual bacteria (DRB) in secondary effluent (SE), denitrification filter effluent (DFE), and ultrafiltration effluent (UE). Results show that ClO2 effectively reduces bacteria in SE and UE, achieving log removal values exceeding 3 at 1 mg/L within 30 min. A salient positive correlation (R2 > 0.95) exists between changes in total fluorescence intensity and disinfection efficacy. Post-treatment, Acinetobacter abundance increased in SE, while Pseudomonas decreased in DFE and UE. At lower ClO2 concentrations, Staphylococcus, Mycobacterium, Aeromonas, and Lactobacillus increased in DFE, but decreased at higher concentrations. After storage, bacterial counts in disinfected samples exceeded those in the control group, surpassing 105 CFU/mL. Despite an initial decline, species richness and evenness partially recovered but remained lower than control levels. Culturing DRB for 72 h showed elevated extracellular polymeric substances (EPS) secretion, quantified as total organic carbon (TOC), ranging from 5 to 27 mg/L, with significantly higher EPS in the disinfection group. Parallel factor analysis with self-organizing maps (PARAFAC-SOM) effectively differentiated water sample types and EPS fluorescent substances, underscoring the potential of three-dimensional fluorescence as an indirect measure of ClO2 disinfection efficacy.


Asunto(s)
Bacterias , Compuestos de Cloro , Desinfectantes , Desinfección , Óxidos , Purificación del Agua , Compuestos de Cloro/farmacología , Óxidos/farmacología , Desinfección/métodos , Desinfectantes/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Purificación del Agua/métodos , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...