Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38860855

RESUMEN

Rhythmic electrical events, termed slow waves, govern the timing and amplitude of phasic contractions of the gastric musculature. Extracellular multielectrode measurement of gastric slow waves can be a biomarker for phenotypes of motility dysfunction. However, a gastric slow wave conduction pathway for the rat, a common animal model, is unestablished. In this study, the validity of extracellular recording was demonstrated in vitro with simultaneous intracellular and extracellular recordings and by pharmacological inhibition of slow waves. The conduction pathway was determined by in vivo extracellular recordings while considering the effect of motion. Slow wave characteristics (mean (SD)) varied regionally, having higher amplitude in the antrum than the distal corpus (1.03 (0.12) mV vs 0.75 (0.31) mV; n = 7; p = 0.025 paired t-test) and faster propagation near the greater curvature than the lesser curvature (1.00 (0.14) mm s-1 vs 0.74 (0.14) mm s-1; n = 9 GC, 7 LC; p = 0.003 unpaired t-test). Notably, in some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely-coupled region occurring in the area near the distal corpus midline, at the interface of the two wavefronts. This region had either the greater or lesser curvature wavefront propagating through it in a time-varying manner. The conduction pattern suggests that slow waves in the rat stomach form annular wavefronts in the antrum and not the corpus. This study has implications for interpretation of the relationship between slow waves, the interstitial cells of Cajal network structure, smooth muscles, and gastric motility.

2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G676-G686, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591131

RESUMEN

The motility of the gastrointestinal tract is coordinated in part by rhythmic slow waves, and disrupted slow-wave patterns are linked to functional motility disorders. At present, there are no treatment strategies that primarily target slow-wave activity. This study assessed the use of pacing to suppress glucagon-induced slow-wave dysrhythmias in the small intestine. Slow waves in the jejunum were mapped in vivo using a high-resolution surface-contact electrode array in pigs (n = 7). Glucagon was intravenously administered to induce hyperglycemia. Slow-wave propagation patterns were categorized into antegrade, retrograde, collision, pacemaker, and uncoupled activity. Slow-wave characteristics such as period, amplitude, and speed were also quantified. Postglucagon infusion, pacing was applied at 4 mA and 8 mA and the resulting slow waves were quantified spatiotemporally. Antegrade propagation was dominant throughout all stages with a prevalence of 55 ± 38% at baseline. However, glucagon infusion resulted in a substantial and significant increase in uncoupled slow waves from 10 ± 8% to 30 ± 12% (P = 0.004) without significantly altering the prevalence of other slow-wave patterns. Slow-wave frequency, amplitude, and speed remained unchanged. Pacing, particularly at 8 mA, significantly suppressed dysrhythmic slow-wave patterns and achieved more effective spatial entrainment (85%) compared with 4 mA (46%, P = 0.039). This study defined the effect of glucagon on jejunal slow waves and identified uncoupling as a key dysrhythmia signature. Pacing effectively entrained rhythmic activity and suppressed dysrhythmias, highlighting the potential of pacing for gastrointestinal disorders associated with slow-wave abnormalities.NEW & NOTEWORTHY Glucagon was infused in pigs to induce hyperglycemia and the resulting slow-wave response in the intact jejunum was defined in high resolution for the first time. Subsequently, with pacing, the glucagon-induced dysrhythmias were suppressed and spatially entrained for the first time with a success rate of 85%. The ability to suppress slow-wave dysrhythmias through pacing is promising in treating motility disorders that are associated with intestinal dysrhythmias.


Asunto(s)
Motilidad Gastrointestinal , Glucagón , Yeyuno , Animales , Porcinos , Motilidad Gastrointestinal/fisiología , Yeyuno/fisiopatología , Intestino Delgado/fisiopatología , Femenino , Hiperglucemia/terapia , Masculino
3.
Sci Rep ; 14(1): 7316, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538670

RESUMEN

The uterus exhibits intermittent electrophysiological activity in vivo. Although most active during labor, the non-pregnant uterus can exhibit activity of comparable magnitude to the early stages of labor. In this study, two types of flexible electrodes were utilized to measure the electrical activity of uterine smooth muscle in vivo in anesthetized, non-pregnant rats. Flexible printed circuit electrodes were placed on the serosal surface of the uterine horn of six anesthetized rats. Electrical activity was recorded for a duration of 20-30 min. Activity contained two components: high frequency activity (bursts) and an underlying low frequency 'slow wave' which occurred concurrently. These components had dominant frequencies of 6.82 ± 0.63 Hz for the burst frequency and 0.032 ± 0.0055 Hz for the slow wave frequency. There was a mean burst occurrence rate of 0.76 ± 0.23 bursts per minute and mean burst duration of 20.1 ± 6.5 s. The use of multiple high-resolution electrodes enabled 2D mapping of the initiation and propagation of activity along the uterine horn. This in vivo approach has the potential to provide the organ level detail to help interpret non-invasive body surface recordings.


Asunto(s)
Trabajo de Parto , Miometrio , Femenino , Embarazo , Ratas , Animales , Miometrio/fisiología , Electromiografía , Útero/fisiología , Trabajo de Parto/fisiología , Electrodos , Contracción Uterina/fisiología
4.
Metabolomics ; 20(2): 41, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480600

RESUMEN

BACKGROUND: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Metabolómica/métodos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Automatización
5.
Sci Rep ; 14(1): 6038, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472365

RESUMEN

Pacing has been proposed as a therapy to restore function in motility disorders associated with electrical dysrhythmias. The spatial response of bioelectrical activity in the small intestine to pacing is poorly understood due to a lack of high-resolution investigations. This study systematically varied pacing parameters to determine the optimal settings for the spatial entrainment of slow wave activity in the jejunum. An electrode array was developed to allow simultaneous pacing and high-resolution mapping of the small intestine. Pacing parameters including pulse-width (50, 100 ms), pulse-amplitude (2, 4, 8 mA) and pacing electrode orientation (antegrade, retrograde, circumferential) were systematically varied and applied to the jejunum (n = 15 pigs). Pulse-amplitudes of 4 mA (p = 0.012) and 8 mA (p = 0.002) were more effective than 2 mA in achieving spatial entrainment while pulse-widths of 50 ms and 100 ms had comparable effects (p = 0.125). A pulse-width of 100 ms and a pulse-amplitude of 4 mA were determined to be most effective for slow wave entrainment when paced in the antegrade or circumferential direction with a success rate of greater than 75%. These settings can be applied in chronic studies to evaluate the long-term efficacy of pacing, a critical aspect in determining its therapeutic potential.


Asunto(s)
Motilidad Gastrointestinal , Yeyuno , Animales , Porcinos , Yeyuno/fisiología , Motilidad Gastrointestinal/fisiología , Estimulación Eléctrica , Electrodos
6.
Adv Mater ; 36(21): e2312597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301612

RESUMEN

Thermochromism, the change in color of a material with temperature, is the fundamental basis of optical thermometry. A longstanding challenge in realizing sensitive optical thermometers for widespread use is identifying materials with pronounced thermometric optical performance in the visible range. Herein, it is demonstrated that single crystals of indium selenium iodide (InSeI), a 1D van der Waals (vdW) solid consisting of weakly bound helical chains, exhibit considerable visible range thermochromism. A strong temperature-dependent optical band edge absorption shift ranging from 450 to 530 nm (2.8 to 2.3 eV) over a 380 K temperature range with an experimental (dEg/dT)max value extracted to be 1.26 × 10-3 eV K-1 is shown. This value lies appreciably above most dense conventional semiconductors in the visible range and is comparable to soft lattice solids. The authors further seek to understand the origin of this unusually sensitive thermochromic behavior and find that it arises from strong electron-phonon interactions and anharmonic phonons that significantly broaden band edges and lower the Eg with increasing temperature. The identification of structural signatures resulting in sensitive thermochromism in 1D vdW crystals opens avenues in discovering low-dimensional solids with strong temperature-dependent optical responses across broad spectral windows, dimensionalities, and size regimes.

7.
IEEE Trans Biomed Eng ; 71(7): 2042-2057, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38294923

RESUMEN

Swallowing is a primary and complex behaviour that transports food and drink from the oral cavity, through the pharynx and oesophagus, into the stomach at an appropriate rate and speed. To understand this sophisticated behaviour, a tremendous amount of research has been carried out by utilising the in vivo approach, which is often challenging to perform, poses a risk to the subjects if interventions are undertaken and are seldom able to control for confounding factors. In contrast, in silico (computational) and in vitro (instrumental) methods offer an alternate insight into the process of the human swallowing system. However, the appropriateness of the design and application of these methods have not been formally evaluated. The purpose of this review is to investigate and evaluate the state of the art of in vitro and in silico swallowing simulators, focusing on the evaluation of their mechanical or computational designs in comparison to the corresponding swallowing mechanisms during various phases of swallowing (oral phase, pharyngeal phase and esophageal phase). Additionally, the potential of the simulators is also discussed in various areas of applications, including the study of swallowing impairments, swallowing medications, food process design and dysphagia management. We also address current limitations and recommendations for the future development of existing simulators.


Asunto(s)
Simulación por Computador , Deglución , Modelos Biológicos , Humanos , Deglución/fisiología , Diseño de Equipo , Faringe/fisiología , Trastornos de Deglución/fisiopatología
8.
Soft Robot ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252793

RESUMEN

Soft gastric simulators are in vitro biomimetic modules that can reproduce the antral contraction waves (ACWs). Along with providing information concerning stomach contents, stomach simulators enable experts to evaluate the digestion process of foods and drugs. Traditionally, open-loop control approaches were implemented on stomach simulators to produce ACWs. Constructing a closed-loop control system is essential to improve the simulator's ability to imitate ACWs in additional scenarios and avoid constant tuning. Closed-loop control can enhance stomach simulators in accuracy, responding to various food and drug contents, timing, and unknown disturbances. In this article, a new generation of anatomically realistic soft pneumatic gastric simulators is designed and fabricated. The presented simulator represents the antrum, the lower portion of the stomach where ACWs occur. It is equipped with a real-time feedback system to implement diverse closed-loop controllers on demand. All the details of the physical design, fabrication, and assembly process are discussed. Also, the measures taken for the mechatronics design and sensory system are highlighted in this article. Through several implementation algorithms and techniques, three closed-loop controllers, including model-based and model-free schemes are designed and successfully applied on the presented simulator to imitate ACWs. All the experimental outcomes are carefully analyzed and compared against the biological counterparts. It is demonstrated that the presented simulator can serve as a reliable tool and method to scrutinize digestion and promote novel technologies around the human stomach and the digestion process. This research methodology can also be utilized to develop other biomimetic and bioinspired applications.

9.
IEEE Trans Biomed Eng ; 71(4): 1289-1297, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37971910

RESUMEN

OBJECTIVE: Bioelectrical 'slow waves' regulate gastrointestinal contractions. We aimed to confirm whether the pyloric sphincter demarcates slow waves in the intact stomach and duodenum. METHODS: We developed and validated novel anatomically-specific electrode cradles and analysis techniques which enable high-resolution slow wave mapping across the in vivo gastroduodenal junction. Cradles housed flexible-printed-circuit and custom cradle-specific electrode arrays during acute porcine experiments (N = 9; 44.92 kg ± 8.49 kg) and maintained electrode contact with the gastroduodenal serosa. Simultaneous gastric and duodenal slow waves were filtered independently after determining suitable organ-specific filters. Validated algorithms calculated slow wave propagation patterns and quantitative descriptions. RESULTS: Butterworth filters, with cut-off frequencies (0.0167 - 2) Hz and (0.167 - 3.33) Hz, were optimal filters for gastric and intestinal slow wave signals, respectively. Antral slow waves had a frequency of (2.76 ± 0.37) cpm, velocity of (4.83 ± 0.21) mm·s-1, and amplitude of (1.13 ± 0.24) mV, before terminating at the quiescent pylorus that was (46.54 ± 5.73) mm wide. Duodenal slow waves had a frequency of (18.13 ± 0.56) cpm, velocity of (11.66 ± 1.36) mm·s-1, amplitude of (0.32 ± 0.03) mV, and originated from a pacemaker region (7.24 ± 4.70) mm distal to the quiescent zone. CONCLUSION: Novel engineering methods enable measurement of in vivo electrical activity across the gastroduodenal junction and provide qualitative and quantitative definitions of slow wave activity. SIGNIFICANCE: The pylorus is a clinical target for a range of gastrointestinal motility disorders and this work may inform diagnostic and treatment practices.


Asunto(s)
Motilidad Gastrointestinal , Marcapaso Artificial , Animales , Porcinos , Motilidad Gastrointestinal/fisiología , Estómago/fisiología , Electrodos , Procesamiento de Señales Asistido por Computador
10.
Ann Biomed Eng ; 52(3): 588-599, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37962674

RESUMEN

Intestinal motility is governed in part by bioelectrical slow-waves and spike-bursts. Mesenteric ischemia is a substantial clinical challenge, but its electrophysiological and contractile mechanisms are not well understood. Simultaneous high-resolution bioelectrical and video mapping techniques were used to capture the changes in slow-waves, spike-bursts, and contractile activity during baseline, ischemia, and reperfusion periods. Experiments were performed on anesthetized pigs where intestinal contractions were quantified using surface strain and diameter measurements, while slow-wave and spike-bursts were quantified using frequency and amplitude. Slow-waves entrainment within the ischemic region diminished during ischemia, resulting in irregular slow-wave activity and a reduction in the frequency from 12.4 ± 3.0 cycles-per-minute (cpm) to 2.5 ± 2.7 cpm (p = 0.0006). At the end of the reperfusion period, normal slow-wave entrainment was observed at a frequency of 11.5 ± 2.9 cpm. There was an increase in spike-burst activity between the baseline and ischemia periods (1.1 ± 1.4 cpm to 8.7 ± 3.3 cpm, p = 0.0003) along with a spasm of circumferential contractions. At the end of the reperfusion period, the frequency of spike-bursts decreased to 2.7 ± 1.4 cpm, and contractions subsided. The intestine underwent tonal contraction during ischemia, with the diameter decreasing from 29.3 ± 2.6 mm to 21.2 ± 6.2 mm (p = 0.0020). At the end of the reperfusion period, the intestinal diameter increased to 27.3 ± 3.9 mm. The decrease in slow-wave activity, increase in spike-bursts, and tonal contractions can objectively identify ischemic segments in the intestine. It is anticipated that the use of electrophysiological slow-wave and spike-burst biomarkers, along with contractile measures, could identify mesenteric ischemia in surgical settings and allow an objective biomarker for successful revascularization.


Asunto(s)
Isquemia Mesentérica , Animales , Porcinos , Intestinos , Motilidad Gastrointestinal/fisiología , Isquemia , Contracción Muscular
11.
IEEE Trans Biomed Eng ; 71(3): 750-757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37729575

RESUMEN

OBJECTIVE: Compromised bowel function is associated with a range of motility disorders such as post-operative ileus and chronic intestinal pseudo-obstruction. Disordered or weak motility compromise the efficient movement of luminal contents necessary for digestion and nutrient absorption. This study investigated the potential of high-energy pacing to enhance contractions in the proximal jejunum of the small intestine. METHODS: Pacing pulse parameters (pulse-width: 100 ms, 200 ms, 400 ms, pulse-amplitude: 4 mA, 6 mA, 8 mA) were systematically varied in the in vivo porcine jejunum (n = 7) and the induced contractile responses were evaluated using a video mapping system. Localized segmental contractions were quantified by measuring the intestinal diameter and thereby computing the strain. The impact of pacing parameters on contractile strain was investigated. Finally, histological studies were conducted on paced tissue to assess for potential tissue damage. RESULTS: Segmental contractions were successfully induced at all pulse-settings and evaluated across 67 pacing sessions. In response to pacing, the intestine segment at the site of pacing contracted, with diameter reduced by 6-18%. Contractile response significantly increased with increasing pulse-amplitude. However, with increasing pulse-width, the increase in contractile response was significant only between 100 ms and 400 ms. Histology showed no tissue damage occurred when maximal pacing energy (pulse-amplitude = 4-8 mA, pulse-width = 400 ms, 5 minute duration) was applied. CONCLUSION: High-energy pacing induced periodic segmental contractions in response to pacing pulses and the contractile strain was proportional to the energy applied on the intestine. The ability to enhance motility through pacing may hold promising therapeutic potential for bowel disorders and awaits clinical translation. SIGNIFICANCE: Small intestine pacing elicits localized segmental contractions which increase in magnitude with increasing pulse settings. This study marks the first adaptation of video mapping techniques to track the pacing response in the small intestine.


Asunto(s)
Motilidad Gastrointestinal , Yeyuno , Animales , Porcinos , Yeyuno/fisiología , Motilidad Gastrointestinal/fisiología , Estimulación Eléctrica/métodos , Intestino Delgado , Contracción Muscular
12.
J Neural Eng ; 20(6)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38100816

RESUMEN

Objective.Neural regulation of gastric motility occurs partly through the regulation of gastric bioelectrical slow waves (SWs) and phasic contractions. The interaction of the tissues and organs involved in this regulatory process is complex. We sought to infer the relative importance of cellular mechanisms in inhibitory neural regulation of the stomach by enteric neurons and the interaction of inhibitory and excitatory electrical field stimulation.Approach.A novel mathematical model of gastric motility regulation by enteric neurons was developed and scenarios were simulated to determine the mechanisms through which enteric neural influence is exerted. This model was coupled to revised and extended electrophysiological models of gastric SWs and smooth muscle cells (SMCs).Main results.The mathematical model predicted that regulation of contractile apparatus sensitivity to intracellular calcium in the SMC was the major inhibition mechanism of active tension development, and that the effect on SW amplitude depended on the inhibition of non-specific cation currents more than the inhibition of calcium-activated chloride current (kiNSCC= 0.77 vs kiAno1= 0.33). The model predicted that the interaction between inhibitory and excitatory neural regulation, when applied with simultaneous and equal intensity, resulted in an inhibition of contraction amplitude almost equivalent to that of inhibitory stimulation (79% vs 77% decrease), while the effect on frequency was overall excitatory, though less than excitatory stimulation alone (66% vs 47% increase).Significance.The mathematical model predicts the effects of inhibitory and excitatory enteric neural stimulation on gastric motility function, as well as the effects when inhibitory and excitatory enteric neural stimulation interact. Incorporation of the model into organ-level simulations will provide insights regarding pathological mechanisms that underpin gastric functional disorders, and allow forin silicotesting of the effects of clinical neuromodulation protocols for the treatment of these disorders.


Asunto(s)
Calcio , Estómago , Estómago/fisiología , Miocitos del Músculo Liso , Neuronas , Contracción Muscular/fisiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-38082764

RESUMEN

Cervical vagus nerve stimulation (cVNS) is a promising neuromodulation therapy for treating symptoms of disease in peripheral organs. The rat is a common animal model for studying and trialing new applications of cVNS therapy, but the stomach and its activity in rats is less well characterized than other animals, such as pigs. We sought to investigate the effects of acute, in vivo cVNS on gastric bioelectrical activity as an intermediate step to computational modeling of the effects of cVNS on gastric smooth muscle electromechanical coupling. Here we show a method of detecting bioelectrical gastric slow wave events using a non-linear energy operator. The marked events are compared to the underlying bioelectrical slow wave activity.The mean propagation velocity before stimulation was 0.79 ± 0.31 mm s-1, and the mean interval was 17.4 ± 1.4 s. During cVNS, there was a significant increase in velocity (1.02 ± 0.69 mm s-1; p < 0.001), and decrease in interval (15.4 ± 2.9 s; p = 0.0196). At stimulation onset, premature slow waves were induced at an ectopic pacemaker location and waves originating at the ectopic and initial pacemaker sites continued to collide following the cessation of cVNS.This work forms the basis for more thorough investigation of the effects of cVNS on gastric bioelectrical slow wave activity and consequential smooth muscle contractions in rats. A better understanding of the effects of cVNS on gastric function will allow the refinement of cVNS therapy to target the stomach, and avoid off-target effects on the stomach.Clinical relevance- This work presents a signal processing and analysis approach for the investigation of cervical vagus nerve stimulation on gastric bioelectrical activity in rats. Vagus nerve stimulation may enable the control and amelioration of hunger, gastric emptying, or functional gastric disorders.


Asunto(s)
Marcapaso Artificial , Estimulación del Nervio Vago , Ratas , Animales , Porcinos , Estómago/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-38082870

RESUMEN

Swallowing involves the precise coordination of a large number of muscles. This coordination can be quantified non-invasively by electromyographic (EMG) time-series analysis of swallowing events. The temporal alignment of swallow events is critical for defining coordination patterns. Here, a new framework was developed to use the acoustic signal associated with the opening of the Eustachian tube as a fiducial marker to align EMG signals with swallowing. To investigate its accuracy, manometry, audio from the Eustachian tube, and EMG were simultaneously recorded from two participants while performing different swallowing maneuvers. Eustachian tube opening consistently occurred alongside EMG activations and within 0.025 ± 0.022 s of the gold standard manometry-determined functional swallowing onset. A comparison with two traditional EMG alignment methods based on the integrated and rectified EMG signals was then performed over eight participants. Discrepancies of between 0.2 to 0.3 s were found between the initiation of swallowing and the onset or peak EMG activity. Eustachian tube opening served as a more accurate fiducial marker for temporal data alignment, compared to the traditional EMG alignment methods that were based on EMG parameters.Clinical Relevance- The proposed method will allow EMG recordings to be directly associated with the functional onset of swallowing. This provides a more accurate foundation for time-series analysis of muscle coordination and thus the identification of EMG biomarkers associated with healthy and dysphagic swallowing.


Asunto(s)
Marcadores Fiduciales , Músculos , Humanos , Electromiografía/métodos , Músculos/fisiología , Manometría/métodos
15.
Artículo en Inglés | MEDLINE | ID: mdl-38082999

RESUMEN

Gastric rhythmic contractions are regulated by bioelectrical events known as slow waves (SW). Abnormal SW activity is associated with gastric motility disorders. Gastric pacing is a potential treatment method to restore rhythmic SW activity. However, to date, the efficacy of gastric pacing is inconsistent and the underlying mechanisms of gastric pacing are poorly understood. Optical mapping is widely used in cardiac electrophysiology studies. Its immunity to pacing artifacts offers a distinct advantage over conventional electrical mapping for studying pacing. In the present study, we first found that optical mapping can image pacing-induced virtual electrode polarization patterns in the stomach (adjacent regions of depolarized and hyperpolarized tissue). Second, we found that elicited SWs usually (15 of 16) originated from the depolarized areas of the stimulated region (virtual cathodes). To our knowledge, this is the first direct observation of virtual electrode polarization patterns in the stomach. Conclusions: Optical mapping can image virtual electrode polarization patterns during gastric pacing with high spatial resolution.Clinical Relevance- Gastric pacing is a potential therapeutic method for gastric motility disorders. This study provides direct observation of virtual electrode polarization pattern during gastric pacing and improves our understanding of the mechanisms underlying gastric pacing..


Asunto(s)
Marcapaso Artificial , Estómago , Estómago/diagnóstico por imagen , Estómago/fisiología , Electrodos
16.
Artículo en Inglés | MEDLINE | ID: mdl-38083297

RESUMEN

A framework to simulate the flow in the stomach using subject-specific motility patterns and geometries was developed. Dynamic 2D magnetic resonance images (MRIs) were obtained. Motility parameters such as contraction speed and occlusion were quantified, and 3D stomach geometries were reconstructed using a semi-automated approach. Computational fluid dynamics (CFD) simulations were performed, and flow patterns were investigated. The stomach of both subjects had distinct anatomical features with computed volumes of 789 mL and 619 mL. For the one subject, the occlusion (i.e., normalized contraction size) was 12% while it was around 25% for the other subject. Contraction speeds were also different (1.9-2.8 mm/s vs 3.0-5.1 mm/s) for each subject. CFD simulations resulted in unsteady laminar flow for both subjects with average velocities of 2.1 and 3.2 mm/s. While antegrade flow was mainly observed in the simulations, a retropulsive jet was also present in both stomachs. The versatile framework developed within this study would allow the generation of CFD models of gastric motility from dynamic MRIs.Clinical Relevance- Subject-specific models of flow patterns informed by gastric motility features can elucidate the impact of contractions and anatomical variations on digestion. Such models can inform therapies to treat gastric dysfunctions and improve their efficacy.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedades Vasculares , Humanos , Simulación por Computador , Imagen por Resonancia Magnética/métodos , Estómago/diagnóstico por imagen , Hidrodinámica
17.
Artículo en Inglés | MEDLINE | ID: mdl-38083505

RESUMEN

Postoperative ileus and chronic intestinal pseudo-obstruction are intestinal motility disorders that can compromise bowel function resulting in a significant reduction in quality of life and prolonged hospital stays. While medication and nutritional support provides relief for some patients, a significant patient population remains untreated. Therefore, alternative treatment options are required. A novel framework that enables small intestine pacing and video mapping of the contractile response was developed. Pacing pulse parameters (pulse-period: 2.7, 10 s, pulse-width: 100, 400 ms, and pulse-amplitude: 4, 6, 8 mA) were systematically varied to investigate the effect of pacing on the small intestine contractility. The contractile response was quantified by computing the strain of the intestinal diameter at the pacing site. The framework was applied in vivo on porcine jejunal loops (n=4) where segmental contractions were induced in response to pacing pulses. Strain increased with increasing pulse-amplitude and pulse-width, while pacing at a period of 2.7 s elicited higher contractile strains compared to pacing at a period of 10 s at all settings (e.g., -0.18 ± 0.06 vs 0.12 ± 0.06 at 8 mA, 400 ms). For a pulse-width of 100 ms, the contractile strain continued to increase with increasing pulse-amplitude, while the induced strain was comparable for all pulse-amplitudes when paced with high pulse-width (400 ms). Therefore, pacing is an effective tool in modulating the intensity of segmental contractions.Clinical Relevance- Different pacing parameters can define contraction intensity and frequency in the small intestine. This is of therapeutic potential for treating motility disorders such as post-operative ileus and chronic intestinal pseudo-obstruction.


Asunto(s)
Ileus , Seudoobstrucción Intestinal , Humanos , Animales , Porcinos , Calidad de Vida , Estimulación Eléctrica/métodos , Intestino Delgado , Seudoobstrucción Intestinal/terapia
18.
Artículo en Inglés | MEDLINE | ID: mdl-38083606

RESUMEN

The primary function of the duodenum is to undertake chemical digestion by ensuring that the partially digested food received from the stomach is well-mixed with the enzymes and chemicals secreted into it. However, little is known about the anatomical variations in the shape of the duodenum within humans, and thus the effect of duodenum shape on the flow and mixing occurring within the lumen has not been studied. In this work, a methodology for analyzing shape variations in the normal duodenal anatomy has been developed and applied to a publicly available dataset of abdominal CT images. This method does not require the placement of landmarks as it is based on the underlying tubular 'C' shape of the duodenum. The average duodenal length and radius of this dataset (consisting of 34 subjects) were 212.8 ± 38 mm and 10.8 ± 2.5 mm respectively. A Principal Component Analysis (PCA) was conducted on a sample of 34 duodenums after normalizing their lengths and the first five principal components were found to contribute to 82 % of the total variation. The first shape component (accounting for 42 % of overall variation) consisted of variations in the radius along the duodenum with no deformations normal to the central plane, and the subsequent shape modes consisted of twists in the centerline either in and out of the central plane, and radial variations at either the inlet or outlet. This is the first study to analyze shape variations in the human duodenum and the results can be combined with flow modeling to analyze the effect of shape on the flow and mixing occurring within the duodenum.Clinical relevance- The methods developed in this study can be used by clinicians to diagnose abnormalities in an individual's duodenum shape.


Asunto(s)
Duodeno , Estómago , Humanos , Duodeno/diagnóstico por imagen
19.
Artículo en Inglés | MEDLINE | ID: mdl-38083614

RESUMEN

Gastrointestinal (GI) sphincters provide critical roles in regulating the transport of contents along the GI tract. Dysfunctions of GI sphincters are associated with a range of major digestive disorders. Despite their importance, the microstructures of GI sphincters are not well investigated. While micro-computed tomography (µ-CT) provides detailed 3D images, conventional segmentation methods rely on manual correction, which is both time-consuming and prone to human error. This study proposes a segmentation method using atrous spatial pyramid pooling (ASPP), which helps in capturing different effective fields of view from a given input feature map, thereof providing finer local and global information for a given pixel. Additionally, we explored the use of multi-species data fusion to make the model more generalized. The proposed segmentation network incorporating ASPP and multi-species data fusion improved the segmentation of sphincter muscle images. Specifically, it increased the dice score and Jaccard index by 3.7% and 5.8%, respectively, while reducing the variance compared to conventional methods.Clinical relevance- Techniques developed in this study will inform µ-CT segmentation of human upper GI sphincters for detailed structural analysis of muscular dysfunction.


Asunto(s)
Tracto Gastrointestinal , Músculo Liso , Humanos , Microtomografía por Rayos X , Tractos Piramidales
20.
Anal Chem ; 95(51): 18645-18654, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38055671

RESUMEN

Untargeted metabolomics is an analytical approach with numerous applications serving as an effective metabolic phenotyping platform to characterize small molecules within a biological system. Data quality can be challenging to evaluate and demonstrate in metabolomics experiments. This has driven the use of pooled quality control (QC) samples for monitoring and, if necessary, correcting for analytical variance introduced during sample preparation and data acquisition stages. Described herein is a scoping literature review detailing the use of pooled QC samples in published untargeted liquid chromatography-mass spectrometry (LC-MS) based metabolomics studies. A literature query was performed, the list of papers was filtered, and suitable articles were randomly sampled. In total, 109 papers were each reviewed by at least five reviewers, answering predefined questions surrounding the use of pooled quality control samples. The results of the review indicate that use of pooled QC samples has been relatively widely adopted by the metabolomics community and that it is used at a similar frequency across biological taxa and sample types in both small- and large-scale studies. However, while many studies generated and analyzed pooled QC samples, relatively few reported the use of pooled QC samples to improve data quality. This demonstrates a clear opportunity for the field to more frequently utilize pooled QC samples for quality reporting, feature filtering, analytical drift correction, and metabolite annotation. Additionally, our survey approach enabled us to assess the ambiguity in the reporting of the methods used to describe the generation and use of pooled QC samples. This analysis indicates that many details of the QC framework are missing or unclear, limiting the reader's ability to determine which QC steps have been taken. Collectively, these results capture the current state of pooled QC sample usage and highlight existing strengths and deficiencies as they are applied in untargeted LC-MS metabolomics.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...