Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 117(3): 721-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24891291

RESUMEN

AIMS: This article shows the effect of nanosecond pulsed electric field (nsPEF) on Escherichia coli, which could imply a durable change in protein expressions and then impacted the phenotype of surviving bacteria that might lead to increase pathogenicity. METHODS AND RESULTS: The effects of nsPEF on E. coli viability and membrane permeabilization were investigated. One log10 reduction in bacterial counts was achieved at field strength of 10(7) V m(-1) with a train of 500 successive pulses of 60 × 10(-9) s. Incubation of germs after treatment with propidium iodide showed that membrane permeabilization was reversible. Possible protein changes of surviving bacteria were checked to assess potential phenotypical changes using two-dimensional electrophoresis. In our study, after 40 generations, only UniProt #P39187 was up-regulated with P ≤ 0·05 compared with the control and corresponded to the uncharacterized protein YtfJ. Antibiograms were used to check whether or not the pattern of cultivable bacteria after nsPEF deliveries changed. CONCLUSIONS: The results tend to show that nsPEFs are able to inactivate bacteria and have probably no serious impact in E. coli protein patterns. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of nsPEF is a safe promising new nonthermal method for bacterial inactivation in the food processing and environmental industry.


Asunto(s)
Electroporación/métodos , Escherichia coli/metabolismo , Microbiología del Agua , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular , Electroporación/instrumentación , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Viabilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA