Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 15(17): e202200648, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35727588

RESUMEN

Li metal, because of its ultrahigh theoretical capacity, has attracted extensive attention. However, uncontrollable dendritic Li formation and infinite electrode dimensional variation hinder application of Li anodes. Herein, Zn,Co bimetallic zeolitic imidazolate frameworks (ZIFs) were synthesized and further pyrolyzed to obtain Zn,Co-containing N-doped porous carbon nanocube (Zn/Co-N@PCN), which was further applied as lithiophilic host to construct the lithiated Zn/Co-N@PCN (Li-Zn/Co-N@PCN). Zn vapor produced many pores on the carbon framework during calcination process that could store enough Li and thus inhibit the huge electrode volume change. Additionally, there were abundant lithiophilic groups in Zn/Co-N@PCN, such as N- or Co/Zn-based species, which were beneficial to uniform Li deposition. Moreover, the stable and conductive carbon-based matrix could ensure superior and reproducible Li plating/stripping behavior in Zn/Co-N@PCN over cycling. As a result, the Li-Zn/Co-N@PCN anode showed a steady and high columbic efficiency of around 99.0 % for 600 cycles at 0.5 mA cm-2 . The Li-Zn/Co-N@PCN-based Li-O2 battery could continuously work beyond 200 cycles, superior to a cell with a Li-Cu anode. These results in this work provide a novel way for construction of the advanced Li-based anodes and the corresponding high-performance Li-O2 batteries.

2.
Chem Commun (Camb) ; 57(85): 11248-11251, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34632999

RESUMEN

NC@Co-HPNC is synthesized, which exhibits a superior ORR/OER performance in acid/base solution. Hence, acid-base dual-electrolyte-based Zn-air batteries using NC@Co-HPNC reveal a long cycling life and a super-high voltage (2.1 V).

3.
ACS Appl Mater Interfaces ; 13(23): 27085-27095, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34080420

RESUMEN

Aqueous Zn-ion batteries (AZBs) have been considered as one of the most promising large-scale energy storage systems, owing to the advantages of raw material abundance, low cost, and eco-friendliness. However, the severe growth of Zn dendrites leads to poor stability and low Coulombic efficiency of AZBs. Herein, to effectively inhibit the growth of Zn dendrites, a new strategy has been proposed, i.e., tuning the surface energy of the Zn anode. This strategy can be achieved by in situ doping of Sn heteroatoms in the lattice of metallic Zn via codeposition of Sn and Zn with a small amount of the SnCl2 electrolyte additive. Density functional theory calculations have suggested that Sn heteroatom doping can sharply decrease the surface free energy of the Zn anode. As a consequence, driven by the locally strong electric field, metallic Sn tends to deposit at the tips of the Zn anode, thus decreases the surface energy and growth of Zn at the tips, resulting in a dendrite-free Zn anode. The positive effect of the SnCl2 additive has been demonstrated in both the Zn∥Zn symmetric battery and the Zn/LFP and Zn/HATN full cell. This novel strategy can light a new way to suppress Zn dendrites for long life span Zn-ion batteries.

4.
Nanoscale ; 11(45): 21943-21952, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31701977

RESUMEN

Exploring highly efficient catalysts for the oxygen reduction/evolution reaction (ORR/OER) is very important in rechargeable Zn-air batteries. N-doped carbon coupled with transition metal-based species are among the most promising cathode catalysts for Zn-air batteries. However, the aggregation of metal-based sites during the synthetic/cycling process is a serious drawback of these catalysts. Herein, in situ encapsulation of ultra-small Co/Co4N nanoparticles into N-doping carbon nanotubes (N-CNTs) anchored on reduced GO (Co/Co4N@N-CNTs/rGO) has been achieved through pyrolyzing a core-shell-structured ZIF-8@ZIF-67-modified GO (ZIF-8@ZIF-67/GO) precursor; the nanoparticles have been further applied as a bifunctional catalyst in Zn-air batteries. Benefitting from its uniform dispersion of Co-based particles, close contact of Co/Co4N species and N-CNTs, and high N content, Co/Co4N@N-CNTs/rGO shows outstanding catalytic activity/stability towards ORR and OER. Moreover, Zn volatilization and rGO introduction in Co/Co4N@N-CNTs/rGO can effectively promote the reactions of Zn-air cells. Hence, the Co/Co4N@N-CNTs/rGO-based conventional Zn-air battery exhibits a fantastic specific capacity of 783 mA h gZn-1, a continuous discharge platform over 6 days, a high-power density of ∼200 mW cm-2 and an ultra-long cycling life of 440 h with a small overpotential of ∼0.8 V. Moreover, a flexible Co/Co4N@N-CNTs/rGO-based Zn-air cell was also designed and revealed outstanding mechanical flexibility and good electrochemical performance, which suggests its potential application prospects in wearable electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA