Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33884071

RESUMEN

The COVID-19 pandemic has challenged undergraduate instructors and students in an unprecedented manner. Each has needed to find creative ways to continue the engaged teaching and learning process in an environment defined by physical separation and emotional anxiety and uncertainty. As a potential tool to meet this challenge, we developed a set of curricular materials that combined our respective life science teaching interests with the real-time scientific problem of the COVID-19 pandemic in progress. Discrete modules were designed that are engaging to students, implement active learning-based coursework in a variety of institutional and learning settings, and can be used either in person or remotely. The resulting interdisciplinary curriculum, dubbed "COVID-360," enables instructors to select from a menu of curricular options that best fit their course content, desired activities, and mode of class delivery. Here we describe how we devised the COVID-360 curriculum and how it represents our efforts to creatively and effectively respond to the instructional needs of diverse students in the face of an ongoing instructional crisis.

2.
J Biol Chem ; 294(14): 5309-5320, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30647134

RESUMEN

Mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are essential components of the mitochondrial translation machinery. The correlation of mitochondrial disorders with mutations in these enzymes has raised the interest of the scientific community over the past several years. Most surprising has been the wide-ranging presentation of clinical manifestations in patients with mt-aaRS mutations, despite the enzymes' common biochemical role. Even among cases where a common physiological system is affected, phenotypes, severity, and age of onset varies depending on which mt-aaRS is mutated. Here, we review work done thus far and propose a categorization of diseases based on tissue specificity that highlights emerging patterns. We further discuss multiple in vitro and in cellulo efforts to characterize the behavior of WT and mutant mt-aaRSs that have shaped hypotheses about the molecular causes of these pathologies. Much remains to do in order to complete our understanding of these proteins. We expect that futher work is likely to result in the discovery of new roles for the mt-aaRSs in addition to their fundamental function in mitochondrial translation, informing the development of treatment strategies and diagnoses.


Asunto(s)
Aminoacil-ARNt Sintetasas , Enfermedades Genéticas Congénitas , Enfermedades Mitocondriales , Proteínas Mitocondriales , Mutación , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Biochem Mol Biol Educ ; 36(3): 209-16, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-21591193

RESUMEN

Site-directed mutagenesis and other molecular biology techniques, including plasmid manipulation and restriction analysis, are commonly used tools in the biochemistry research laboratory. In redesigning our biochemistry lab curricula, we sought to integrate these techniques into a term-long, project-based course. In the module presented here, students use structural data to design a site-directed mutant and make the mutation using the Künkel method. A second, silent mutant, that creates or removes a restriction site, is simultaneously introduced. Restriction digestion and agarose gel electrophoresis are used to assess the success of mutagenesis. Placing these procedures in the context of continuous, student-driven project serves to create a "research style" laboratory environment.

4.
J Biol Chem ; 281(38): 27862-72, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16864571

RESUMEN

Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.


Asunto(s)
Aminoacil-ARNt Sintetasas/fisiología , Edición de ARN , Aminoacilación de ARN de Transferencia , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Sitios de Unión , Hidrólisis , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA