Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 143: 112229, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649355

RESUMEN

Kaempferia parviflora (KP) has been used as folk medicine for curing various conditions, including anti-inflammatory diseases. However, anti-psoriatic effects in an aspect of suppression of NF-κB activation have not been explored. Therefore, our current study aimed to elucidate the anti-inflammation of KP in lipopolysaccharide (LPS)-induced RAW264.7 cells and anti-psoriatic effects of KP in cytokine-induced human keratinocytes, HaCaT cells. We discovered that KP extract significantly suppressed LPS-induced inflammation at both gene expression and protein production. Specifically, dramatic reduction of nitric oxide (NO) was explored by using Griess method. Consistently, data from RT-qPCR, ELISA, and western blot analysis confirmed that crucial inflammatory and psoriatic markers including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-17, IL-22, and IL-23 were significantly decreased by the action of KP. These events were associated with the results from immunofluorescence study and western blot analysis where the activation of NF-κB upon LPS stimulation was clearly inhibited by KP through its ability to suppress IκB-α degradation resulting in inhibition of NF-κB nuclear translocation. Furthermore, KP extract significantly inhibited LPS-stimulated phosphorylation of ERK1/2, JNK, and p38 in a dose-dependent manner, along with inhibition of ERK1/2 activation in both TNF-α- and EGF-induced HaCaT cells. Interestingly, HaCaT cells exposed to 15 µg/mL of KP also exhibited significant decrease of cell migration and proliferation. Our results revealed that KP extract has a potential to be developed as a promising agent for treating inflammation and psoriasis, in part through targeting the proliferation and the NF-κB pathways.


Asunto(s)
Antiinflamatorios/farmacología , Fármacos Dermatológicos/farmacología , Inflamación/tratamiento farmacológico , Queratinocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Extractos Vegetales/farmacología , Psoriasis/tratamiento farmacológico , Zingiberaceae , Animales , Antiinflamatorios/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Fármacos Dermatológicos/aislamiento & purificación , Células HaCaT , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Queratinocitos/inmunología , Queratinocitos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosforilación , Extractos Vegetales/aislamiento & purificación , Psoriasis/inmunología , Psoriasis/metabolismo , Células RAW 264.7 , Transducción de Señal , Zingiberaceae/química
2.
Plants (Basel) ; 10(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34371622

RESUMEN

Zingiber ottensii (ZO) is a local plant in Thailand and has been used as a Thai traditional therapy for many conditions. ZO has been reported to exhibit many pharmacological effects, including anti-cancer activity. Nevertheless, its anti-cancer effects explored at the signaling level have not been elucidated in cervical cancer, which is one of the leading causes of fatality in females. We discovered that the essential oil of ZO significantly increased the apoptosis of human cervical cancer cells (HeLa) after 24 h of treatment in a concentration-dependent manner. Our data also clearly demonstrated that ZO essential oil reduced IL-6 levels in the culture supernatants of the cancer cells. Moreover, Western blot analysis clearly verified that cells were induced to undergo apoptotic death via caspase activation upon treatment with ZO essential oil. Interestingly, immunofluorescence studies and Western blot analyses showed that ZO essential oil suppressed epidermal growth factor (EGF)-induced pAkt and pERK1/2 signaling pathway activation. Together, our study demonstrates that ZO essential oil can reduce the proliferation and survival signaling of HeLa cervical cancer cells. Our study provides convincing data that ZO essential oil suppresses the growth and survival of cervical cancer cells, and it may be a potential choice for developing an anti-cancer agent for treating certain cervical cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA