Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(9): 2397-2400, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126282

RESUMEN

Few-cycle, long-wavelength sources for generating isolated attosecond soft x ray pulses typically rely upon complex laser architectures. Here, we demonstrate a comparatively simple setup for generating sub-two-cycle pulses in the short-wave infrared based on multidimensional solitary states in an N2O-filled hollow-core fiber and a two-channel light-field synthesizer. Due to the temporal phase imprinted by the rotational nonlinearity of the molecular gas, the redshifted (from 1.03 to 1.36 µm central wavelength) supercontinuum pulses generated from a Yb-doped laser amplifier are compressed from 280 to 7 fs using only bulk materials for dispersion compensation.

2.
Opt Lett ; 46(10): 2437-2440, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988603

RESUMEN

Few-cycle sources with high average powers are required for applications to attosecond science. Raman-enhanced spectral broadening of Yb-doped laser amplifiers in molecular gases can yield few-cycle pulses, but thermal excitation of vibrational and rotational degrees of freedom may preclude high-power operation. Here we investigate changes in the spectral broadening associated with repetitive laser interactions in an ${{\rm{N}}_2}{\rm{O}}$-filled hollow-core fiber. By comparing experimental measurements of the spectrum associated with each laser pulse to simulations based on a density matrix model, we find that losses in a spectral bandwidth and transmission are largely dominated by thermal excitation of the gas.

3.
Sci Adv ; 6(34)2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32937367

RESUMEN

The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to most efficiently exploit "instantaneous" optical nonlinearities in noble gases for spectral broadening and parametric frequency conversion. Here, we show that nonlinear compression can be much more efficient when driven in molecular gases by pulses substantially longer than a few cycles because of enhanced optical nonlinearity associated with rotational alignment. We use 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.6 cycles. As the enhanced nonlinearity is linked to rotational motion, the dynamics can be exploited for long-wavelength frequency conversion and compressing picosecond lasers.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32726762

RESUMEN

To analyze the role of electron-electron correlation effects in structural (local-geometry), spectral and polarization properties of tetragonal BaTiO3 we apply DFT+U approach. We demonstrate that the system properties drastically change when the value of the local Coulomb repulsion U crosses the critical value U_c ≈ 7 eV. In particular, the correlation effects cause a change of the ratio of the in-plane and inter-plane Ti-O bond lengths, which results in a flip of the order of the Ti d-bands and change of the polarizability of the system. Since the exact value of U in BaTiO3 is unknown, we discuss how the obtained results may be revealed in experimental data, especially in the optical response and ultrafast charge dynamics, where effective U is dynamically tuned.

5.
Rev Sci Instrum ; 91(1): 013102, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32012559

RESUMEN

Characterizing and controlling electronic properties of quantum materials require direct measurements of nonequilibrium electronic band structures over large regions of momentum space. Here, we demonstrate an experimental apparatus for time- and angle-resolved photoemission spectroscopy using high-order harmonic probe pulses generated by a robust, moderately high power (20 W) Yb:KGW amplifier with a tunable repetition rate between 50 and 150 kHz. By driving high-order harmonic generation (HHG) with the second harmonic of the fundamental 1025 nm laser pulses, we show that single-harmonic probe pulses at 21.8 eV photon energy can be effectively isolated without the use of a monochromator. The on-target photon flux can reach 5 × 1010 photons/s at 50 kHz, and the time resolution is measured to be 320 fs. The relatively long pulse duration of the Yb-driven HHG source allows us to reach an excellent energy resolution of 21.5 meV, which is achieved by suppressing the space-charge broadening using a low photon flux of 1.5 × 108 photons/s at a higher repetition rate of 150 kHz. The capabilities of the setup are demonstrated through measurements in the topological semimetal ZrSiS and the topological insulator Sb2-xGdxTe3.

6.
Sci Rep ; 8(1): 11794, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087371

RESUMEN

We present a straightforward route for extreme pulse compression, which relies on moderately driving self-phase modulation (SPM) over an extended propagation distance. This avoids that other detrimental nonlinear mechanisms take over and deteriorate the SPM process. The long propagation is obtained by means of a hollow-core fiber (HCF), up to 6 m in length. This concept is potentially scalable to TW pulse peak powers at kW average power level. As a proof of concept, we demonstrate 33-fold pulse compression of a 1 mJ, 6 kHz, 170 fs Yb laser down to 5.1 fs (1.5 cycles at 1030 nm), by employing a single HCF and subsequent chirped mirrors with an overall transmission of 70%.

7.
Nat Commun ; 8(1): 794, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970479

RESUMEN

Nature Communications 8:186 doi: 10.1038/s41467-017-00321-0 (2017); Article published online: 4 August 2017.

8.
Nat Commun ; 8(1): 724, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959029

RESUMEN

High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We decouple the role of long-range periodicity by comparing harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. Our results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.Although higher harmonic generation from solids has become of interest in many fields, its observation is typically limited to crystalline solids. Here, the authors demonstrate that higher harmonics can be generated from amorphous solids.

9.
Nat Commun ; 8(1): 186, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28775272

RESUMEN

The motion of electrons in the microcosm occurs on a time scale set by the atomic unit of time-24 attoseconds. Attosecond pulses at photon energies corresponding to the fundamental absorption edges of matter, which lie in the soft X-ray regime above 200 eV, permit the probing of electronic excitation, chemical state, and atomic structure. Here we demonstrate a soft X-ray pulse duration of 53 as and single pulse streaking reaching the carbon K-absorption edge (284 eV) by utilizing intense two-cycle driving pulses near 1.8-µm center wavelength. Such pulses permit studies of electron dynamics in live biological samples and next-generation electronic materials such as diamond.Isolated attosecond pulses are produced using high harmonic generation and sources of these pulses often suffer from low photon flux in soft X-ray regime. Here the authors demonstrate efficient generation and characterization of 53 as pulses with photon energy near the water window.

10.
Opt Lett ; 42(9): 1816-1819, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28454168

RESUMEN

Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

11.
Nature ; 538(7625): 325-326, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762364

Asunto(s)
Electrones , Física
12.
Opt Lett ; 41(13): 3106-9, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27367113

RESUMEN

Divided-pulse amplification (DPA) has proven to be a valuable tool in scaling the peak power of diode-pumped ytterbium-doped amplifiers to beyond the single-pulse threshold for parasitic nonlinear effects. DPA enables the amplification of picosecond pulses in solid-state amplifiers with limited bandwidth beyond the single-pulse damage threshold. In this Letter, we demonstrate DPA of picosecond pulses in a flashlamp-pumped Nd:YAG amplifier for the first time, to the best of our knowledge, yielding a combined pulse energy of 167 mJ.

13.
Sci Rep ; 6: 20363, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26847427

RESUMEN

Broadband laser sources based on supercontinuum generation in femtosecond laser filamentation have enabled applications from stand-off sensing and spectroscopy to the generation and self-compression of high-energy few-cycle pulses. Filamentation relies on the dynamic balance between self-focusing and plasma defocusing - mediated by the Kerr nonlinearity and multiphoton or tunnel ionization, respectively. The filament properties, including the supercontinuum generation, are therefore highly sensitive to the properties of both the laser source and the propagation medium. Here, we report the anomalous spectral broadening of the supercontinuum for filamentation in molecular gases, which is observed for specific elliptical polarization states of the input laser pulse. The resulting spectrum is accompanied by a modification of the supercontinuum polarization state and a lengthening of the filament plasma column. Our experimental results and accompanying simulations suggest that rotational dynamics of diatomic molecules play an essential role in filamentation-induced supercontinuum generation, which can be controlled with polarization ellipticity.

14.
Opt Lett ; 39(12): 3670-3, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978564

RESUMEN

Separating the infrared driving laser from the extreme ultraviolet (XUV) pulses after high-order harmonic generation has been a long-standing difficulty. In this Letter, we propose and demonstrate that the driving laser can be blocked by simply installing a microchannel plate (MCP) into the beam line. In addition to its high damage threshold, the MCP filter also transmits photons over the entire XUV region. This paves the way for attosecond pulse generation with unprecedented bandwidth.

15.
Appl Opt ; 52(3): 323-9, 2013 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-23338177

RESUMEN

We report a method for calibrating an extreme ultraviolet spectrometer based on a flat-field grazing incidence spherical grating in the energy range of 20-30 eV. By measuring absorption lines corresponding to singly excited states in helium atoms and autoionizing states in argon atoms, the photon energy of the detected light was determined. The spectral resolution of the spectrometer, 60 meV, was obtained by deconvolving the Fano resonance profile of argon autoionizing states from the measured absorption line profiles.

16.
Opt Lett ; 37(18): 3891-3, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23041894

RESUMEN

A single isolated attosecond pulse of 67 as was composed from an extreme UV supercontinuum covering 55-130 eV generated by the double optical gating technique. Phase mismatch was used to exclude the single-atom cutoff of the spectrum that possesses unfavorable attochirp, allowing the positive attochirp of the remaining spectrum to be compensated by the negative dispersion of a zirconium foil. Two algorithms, PROOF and FROG-CRAB, were employed to retrieve the pulse from the experimental spectrogram, yielding nearly identical results.

17.
Phys Rev Lett ; 109(7): 073601, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-23006370

RESUMEN

Recent advances in attosecond science have relied upon the nearly instantaneous response of free electrons to an external field. However, it is still not clear whether bound electrons are able to rearrange on sublaser cycle time scales. Here, we probe the optical Stark shifts induced by a few-cycle near infrared laser field in helium bound states using isolated attosecond pulses in a transient absorption scheme and uncover a subcycle laser-induced energy level shift of the laser-dressed 1s3p state.

18.
Phys Rev Lett ; 105(9): 093902, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20868162

RESUMEN

Single isolated attosecond pulses can be extracted from a pulse train with an ultrafast gate in the generation target. By setting the gate width sufficiently narrow with the generalized double optical gating, we demonstrate that single isolated attosecond pulses can be generated with any arbitrary carrier-envelope phase value of the driving laser. The carrier-envelope phase only affects the photon flux, not the pulse duration or contrast. Our results show that isolated attosecond pulses can be generated using carrier-envelope phase unstabilized 23 fs pulses directly from chirped pulse amplifiers.

19.
Opt Express ; 18(12): 13006-16, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20588429

RESUMEN

Recent progress in sub-laser-cycle gating of high-order harmonic generation promises to push the limits on optical pulse durations below the atomic unit of time, 24 as, which corresponds to a bandwidth broader than 75 eV. However, the available techniques for attosecond pulse measurement are valid only for narrow-bandwidth spectra, due to one of the key approximations made in the phase retrieval. Here we report a new technique for characterizing attosecond pulses, whereby the spectral phase of the attosecond pulse is extracted from the oscillation component with the dressing laser frequency in the photoelectron spectrogram. This technique, termed PROOF (Phase Retrieval by Omega Oscillation Filtering), can be applied to characterizing attosecond pulses with ultrabroad bandwidths.

20.
Opt Express ; 18(2): 1316-22, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20173958

RESUMEN

We report a new method for determining the energy resolution of time-of-flight spectrometers for detecting photoelectrons produced with attosecond XUV pulses. By measuring the width of the 2s2p autoionization line of helium, we found the resolution of our spectrometer to be approximately 0.6 eV for electrons at 35.5 eV. Furthermore, the resolution in the 10 to 35 eV range was determined by applying a retarding potential at the entrance of the drift tube.


Asunto(s)
Algoritmos , Fotograbar/instrumentación , Fotograbar/normas , Análisis Espectral/instrumentación , Análisis Espectral/normas , Calibración , Análisis de Falla de Equipo/métodos , Análisis de Falla de Equipo/normas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...