Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 112(15): 153001, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24785035

RESUMEN

High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straightforward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.

2.
Phys Rev Lett ; 102(9): 093002, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19392517

RESUMEN

The group delay dispersion, also known as the attochirp, of high-order harmonics generated in gases has been identified as the main intrinsic limitation to the duration of Fourier-synthesized attosecond pulses. Theory implies that the attochirp, which is inversely proportional to the laser wavelength, can be decreased at longer wavelength. Here we report the first measurement of the wavelength dependence of the attochirp using an all-optical, in situ method [N. Dudovich, Nature Phys. 2, 781 (2006)10.1038/nphys434]. We show that a 2 microm driving wavelength reduces the attochirp with respect to 0.8 microm at comparable intensities.

3.
Opt Lett ; 32(7): 868-70, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17339964

RESUMEN

We report the compression of intense, carrier-envelope phase stable mid-IR pulses down to few-cycle duration using an optical filament. A filament in xenon gas is formed by using self-phase stabilized 330 microJ 55 fs pulses at 2 microm produced via difference-frequency generation in a Ti:sapphire-pumped optical parametric amplifier. The ultrabroadband 2 microm carrier-wavelength output is self-compressed below 3 optical cycles and has a 270 microJ pulse energy. The self-locked phase offset of the 2 microm difference-frequency field is preserved after filamentation. This is to our knowledge the first experimental realization of pulse compression in optical filaments at mid-IR wavelengths (lambda>0.8 microm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...