Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Struct Dyn ; 7(2): 024302, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32232075

RESUMEN

A pump-probe approach was designed to determine the internal proton transfer (PT) rate in a series of poly-peptide radical cations containing both histidine and tryptophan. The proton transfer is driven by the gas-phase basicity difference between residues. The fragmentation scheme indicates that the gas-phase basicity of histidine is lower than that of radical tryptophan so that histidine is always pulling the proton away from tryptophan. However, the proton transfer requires the two basic sites to be in close proximity, which is rate limited by the peptide conformational dynamics. PT rate measurements were used to probe and explore the peptide conformational dynamics in several poly-glycines/prolines/alanines. For small and unstructured peptides, the PT rate decreases with the size, as expected from a statistical point of view in a flat conformational space. Conversely, if structured conformations are accessible, the structural flexibility of the peptide is decreased. This slows down the occurrence of conformations favorable to proton transfer. A dramatic decrease in the PT rates was observed for peptides HAnW, when n changes from 5 to 6. This is attributed to the onset of a stable helix for n = 6. No such discontinuity is observed for poly-glycines or poly-prolines. In HAnW, the gas-phase basicity and helix propensity compete for the position of the charge. Interestingly, in this competition between PT and helix formation in HA6W, the energy gain associated with helix formation is large enough to slow down the PT beyond experimental time but does not ultimately prevail over the proton preference for histidine.

2.
J Mass Spectrom ; 52(3): 133-138, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28112477

RESUMEN

In the field of polymer characterization, the use of ion mobility mass spectrometry (IMMS) remains mainly devoted to the temporal separation of cationized oligomers according to their charge states, molecular masses and macromolecular architectures in order to probe the presence of different structures. When analyzing multiply charged polymer ions by IMMS, the most striking feature is the observation of breaking points in the evolution of the average collision cross sections with the number of monomer units. Those breaking points are associated to the folding of the polymer chain around the cationizing agents. Here, we scrutinize the shape of the arrival time distribution (ATD) of polylactide ions and associate the broadening as well as the loss of symmetry of the ATD signals to the coexistence of different populations of ions attributed to the transition from opened to folded stable structures. The observation of distinct distributions reveals the absence of folded/extended structure interconversion on the ion mobility time scale (1-10 ms) and then on the lifetime of ions within the mass spectrometer at room temperature. In order to obtain information on the possible interconversion between the different observed populations upon ion activation, we performed IM-IM-MS experiments (tandem ion mobility measurements). To do so, mobility-selected ions were activated by collisions before a second mobility measurement. Interestingly, the conversion by collisional activation from a globular structure into a (partially) extended structure, i.e. the gas phase unfolding of the ions, was not observed in the energetic regime available with the used experimental setup. The absence of folded/extended interconversion, even upon collisional activation, points to the fact that the polylactide ions are 'frozen' in their specific 3D structure during the desolvation/ionization electrospray processes. Copyright © 2017 John Wiley & Sons, Ltd.

3.
Eur J Mass Spectrom (Chichester) ; 16(5): 557-65, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20814083

RESUMEN

We present the simulation of a cylindrical ion trap (CIT) at high pressure (5-25 Torr range). SIMION 7.0 software was used for the simulations. The effect of pressure, RF frequency and trap dimensions has been investigated. The shape of stability diagrams at non-zero pressure is drastically different from the one observed in vacuum. Preliminary experimental results are shown, using a r = z = 3 mm-long CIT at 12 Torr for trapping peptide and protein ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA