Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(16)2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-36010587

RESUMEN

Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the Q nucleobase, they must obtain it from their diet or gut microbiota. Previously, we described the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and characterized the enzyme EhTGT responsible for queuine incorporation into tRNA. At present, it is unknown how E. histolytica salvages queuine from gut bacteria. We used liquid chromatography-mass spectrometry (LC-MS) and N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. We then examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. We found that glutathione S-transferase (GST)-EhDUF2419 catalyzed the conversion of Q into queuine. Trophozoites silenced for EhDUF2419 expression are impaired in their ability to form Q-tRNA from Q or from E. coli. We also observed that Q or E. coli K12 partially protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the direct salvaging of queuine from bacteria and for the resistance of the parasite to OS.


Asunto(s)
Entamoeba histolytica , Parásitos , Animales , Entamoeba histolytica/metabolismo , Escherichia coli/metabolismo , Guanina/análogos & derivados , Humanos , Parásitos/metabolismo , ARN de Transferencia/genética
2.
Front Microbiol ; 13: 1079710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726575

RESUMEN

Pseudomonas aeruginosa gidA, which encodes a putative tRNA-modifying enzyme, is associated with a variety of virulence phenotypes. Here, we demonstrated that P. aeruginosa gidA is responsible for the modifications of uridine in tRNAs in vivo. Loss of gidA was found to have no impact on the mRNA levels of katA and katB, but it decreased KatA and KatB protein levels, resulting in decreased total catalase activity and a hydrogen peroxide-sensitive phenotype. Furthermore, gidA was found to affect flagella-mediated motility and biofilm formation; and it was required for the full virulence of P. aeruginosa in both Caenorhabditis elegans and macrophage models. Together, these observations reveal the posttranscriptional impact of gidA on the oxidative stress response, highlight the complexity of catalase gene expression regulation, and further support the involvement of gidA in the virulence of P. aeruginosa.

3.
FEMS Microbiol Lett ; 368(15)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329426

RESUMEN

A gene encoding the TetR-type transcriptional regulator mfsR is located immediately downstream of mfsQ and is transcribed in the same transcriptional unit. mfsQ encodes a major facilitator superfamily (MFS) efflux transporter contributing to the resistance of Stenotrophomonas maltophilia towards disinfectants belonging to quaternary ammonium compounds (QACs), which include benzalkonium chloride (BAC). Phylogenetic analysis revealed that MfsR is closely related to CgmR, a QAC-responsive transcriptional regulator belonging to the TetR family. MfsR regulated the expression of the mfsQR operon in a QAC-inducible manner. The constitutively high transcript level of mfsQ in an mfsR mutant indicated that MfsR functions as a transcriptional repressor of the mfsQR operon. Electrophoretic mobility shift assays showed that purified MfsR specifically bound to the putative promoter region of mfsQR, and in vitro treatments with QACs led to the release of MfsR from binding complexes. DNase I protection assays revealed that the MfsR binding box comprises inverted palindromic sequences located between motifs -35 and -10 of the putative mfsQR promoter. BAC-induced adaptive protection was abolished in the mfsR mutant and was restored in the complemented mutant. Overall, MfsR is a QACs-sensing regulator that controls the expression of mfsQ. In the absence of QACs, MfsR binds to the box located in the mfsQR promoter and represses its transcription. The presence of QACs derepresses MfsR activity, allowing RNA polymerase binding and transcription of mfsQR. This MfsR-MsfQ system enables S. maltophilia to withstand high levels of QACs.


Asunto(s)
Proteínas Bacterianas , Compuestos de Benzalconio , Stenotrophomonas maltophilia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Compuestos de Benzalconio/farmacología , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Operón , Filogenia , Compuestos de Amonio Cuaternario/farmacología , Stenotrophomonas maltophilia/clasificación , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo
4.
Can J Microbiol ; 67(6): 491-495, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33151759

RESUMEN

The persistence of Stenotrophomonas maltophilia, especially in hospital environments where disinfectants are used intensively, is one of the important factors that allow this opportunistic pathogen to establish nosocomial infections. In the present study, we illustrated that S. maltophilia possesses adaptive resistance to the disinfectant benzalkonium chloride (BAC). This BAC adaptation was abolished in the ΔmfsQ mutant, in which a gene encoding an efflux transporter belonging to the major facilitator superfamily (MFS) was deleted. The ΔmfsQ mutant also showed increased susceptibility to BAC and chlorhexidine gluconate compared with a parental wild type. The expression of mfsQ increased upon exposure to quaternary ammonium compounds, including BAC. Thus, the results of this study suggest that mfsQ plays a role in both adaptive and nonadaptive protection of S. maltophilia from the toxicity of the disinfectant BAC.


Asunto(s)
Compuestos de Benzalconio/farmacología , Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Stenotrophomonas maltophilia/fisiología , Genes Bacterianos , Humanos , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Compuestos de Amonio Cuaternario/farmacología , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/genética
5.
Nucleic Acids Res ; 47(17): 9271-9281, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31428787

RESUMEN

Cellular response to oxidative stress is a crucial mechanism that promotes the survival of Pseudomonas aeruginosa during infection. However, the translational regulation of oxidative stress response remains largely unknown. Here, we reveal a tRNA modification-mediated translational response to H2O2 in P. aeruginosa. We demonstrated that the P. aeruginosa trmB gene encodes a tRNA guanine (46)-N7-methyltransferase that catalyzes the formation of m7G46 in the tRNA variable loop. Twenty-three tRNA substrates of TrmB with a guanosine residue at position 46 were identified, including 11 novel tRNA substrates. We showed that loss of trmB had a strong negative effect on the translation of Phe- and Asp-enriched mRNAs. The trmB-mediated m7G modification modulated the expression of the catalase genes katA and katB, which are enriched with Phe/Asp codons at the translational level. In response to H2O2 exposure, the level of m7G modification increased, consistent with the increased translation efficiency of Phe- and Asp-enriched mRNAs. Inactivation of trmB led to decreased KatA and KatB protein abundance and decreased catalase activity, resulting in H2O2-sensitive phenotype. Taken together, our observations reveal a novel role of m7G46 tRNA modification in oxidative stress response through translational regulation of Phe- and Asp-enriched genes, such as katA and katB.


Asunto(s)
Proteínas Bacterianas/genética , Catalasa/genética , Estrés Oxidativo/genética , ARNt Metiltransferasas/genética , Secuencia de Aminoácidos , Guanosina/genética , Humanos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética
6.
Antonie Van Leeuwenhoek ; 112(5): 809-814, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30467663

RESUMEN

Inactivation of ahpC, encoding alkyl hydroperoxide reductase, rendered Stenotrophomonas maltophilia more resistant to H2O2; the phenotype was directly correlated with enhanced total catalase activity, resulting from an increased level of KatA catalase. Plasmid-borne expression of ahpC from pAhpCsm could complement all of the mutant phenotypes. Mutagenesis of the proposed AhpC peroxidactic and resolving cysteine residues to alanine (C47A and C166A) on the pAhpCsm plasmid diminished its ability to complement the ahpC mutant phenotypes, suggesting that the mutagenized ahpC was non-functional. As mutations commonly occur in bacteria living in hostile environment, our data suggest that point mutations in ahpC at codons required for the enzyme function (such as C47 and C166), the AhpC will be non-functional, leading to high resistance to the disinfectant H2O2.


Asunto(s)
Proteínas Bacterianas/genética , Desinfectantes/farmacología , Peróxido de Hidrógeno/farmacología , Peroxirredoxinas/genética , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/enzimología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Peroxirredoxinas/metabolismo , Stenotrophomonas maltophilia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...