Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Appl Clin Med Phys ; 25(2): e14274, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265979

RESUMEN

PURPOSE: To characterize detector array spacing and gamma index for quality assurance (QA) of stereotactic radiosurgery (SRS) deliveries. Use the Nyquist theorem to determine the required detector spacing in SRS fields, and find optimal gamma indices to detect MLC errors using the SRS MapCHECK, ArcCHECK, and a portal imaging device (EPID). METHODS: The required detector spacing was determined via Fourier analysis of small radiation fields and profiles of typical SRS treatment plans. The clinical impact of MLC errors of 0.5, 1, and 2 mm was evaluated. Global gamma (low-dose threshold 10%) was evaluated for the three detector systems using various combinations of the distance to agreement and the dose difference. RESULTS: While MLC errors only slightly affected mean dose to PTV and a 2 mm thick surrounding structure (PTV_2 mm), significant PTV underdose incurred with increase in maximum dose to PTV_2 mm. Gamma indices with highest sensitivity to the introduced errors at 95% tolerance level for plans on target volumes of 3.2 cm3 (plan 3 cc) and 35.02 cm3 (plan 35 cc) were 2%/1 mm for the SRS MapCHECK and 2%/3 mm for the ArcCHECK, with 3%/1 mm (plan 3cc) and 2%/1 mm (plan 35cc) for the EPID. Drops in passing rates for a 2 mm MLC error were (46.2%, 41.6%) for the SRS MapCHECK and (12.2%, 4.2%) for the ArcCHECK for plan 3cc and plan 35cc, respectively. For Portal Dose, values were 4.5% (plan 3cc) and 7% (plan 35cc). The Nyquist frequency of two SRS dose distributions lie between 0.26  and 0.1 mm-1 , corresponding to detector spacings of 1.9 and 5 mm. Evaluation of SRS MapCHECK data with doubled detector density indicates that increased detector density may reduce the system's sensitivity to errors, necessitating a tighter gamma index. CONCLUSIONS: The present results give insight on the performance of detector arrays and gamma indices for the investigated detectors during SRS QA.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Rayos gamma , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica
2.
Ecancermedicalscience ; 15: 1227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34158831

RESUMEN

In an ongoing effort to improve access to state-of-the-art radiotherapy in low- and middle-income countries (LMICs), a joint symposium was organised by the non-governmental, non-profit organisation Medical physicists in diaspora for Africa e.V. (MephidA e.V.) in collaboration with the Germany-based Cameroon-German medical doctor's association (Camfomedics e.V.) and the Harvard-based Global Health Catalyst summit. The goal of the symposium was to discuss the technical and structural challenges faced in African LMIC settings, re-evaluate strategies to overcome the shortfall of radiotherapy services and ameliorate the situation. The meeting brought together industry partners, including radiotherapy machine vendors and dosimetry solution providers, alongside public health, oncology and medical physics experts. This paper summarises the deliberations and recommendations based on the ongoing efforts including the use of information and communication technologies towards the provision of expert knowledge and telemedicine, the use of solar energy to avoid power outages and the use of high-end technology for enhanced quality assurance. We also present the experiences on the first linac installation at the Rwanda Military Hospital, the challenges faced in this LMIC as well as the patient's demography, reflecting the reality in most sub-Saharan LMICs.

3.
Z Med Phys ; 29(1): 39-48, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29880304

RESUMEN

The frequently applied narrow and non-standard transverse dose profiles of intensity modulated photon-beam radiotherapy, lacking lateral secondary electron equilibrium, require the use of high-resolution dosimetry detectors, and small air-filled detectors are recommended as the reference detectors for cross-calibration of the high-resolution detectors. The present study focuses on the dosimetric properties of a novel cylindrical ionization chamber, the PTW Semiflex 3D 31021. The chamber's effective point of measurement was found to lie at (0.41±0.04) r downstream the tip of the inner surface of the spherical front wall in the axial orientation and (0.46±0.04) r upstream the chamber axis in the radial orientation. Due to its symmetrical design, the sigma values of its lateral dose response functions for all chamber's orientations are the same (2.10±0.05mm). The polarity correction factors obtained in this work do not exceed 0.1% and the saturation correction factor was below 1% up to a dose-per-pulse value of 0.956mGy. The radiation quality correction factor kQ of the chamber as a function of the tissue-phantom-ratio, TPR20,10, has been calculated by Monte Carlo simulation and has been determined experimentally at the German Metrology Institute (Physikalisch-Technische Bundesanstalt, PTB). The values of the non-reference condition correction factor kNR have been Monte-Carlo-calculated for use of the chamber at various depths and field sizes.


Asunto(s)
Método de Montecarlo , Radiometría/instrumentación , Radioterapia de Intensidad Modulada/instrumentación , Algoritmos , Fotones , Radiometría/métodos , Radioterapia de Intensidad Modulada/métodos
4.
Z Med Phys ; 28(4): 293-302, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28969957

RESUMEN

The aim of this study has been to develop a two-step method of in-phantom dosimetry around a brachytherapy 192Ir photon source. The first step is to measure the absorbed dose rate to water with a calibrated ionization chamber under reference conditions, the second to cross-calibrate, under these conditions, small solid-state detectors such as silicon diodes, synthetic diamond or scintillation detectors suited for spatially resolved dose rate measurements at other, particularly at smaller source axis distances in the water phantom. This two-step approach constitutes a method for in-phantom dosimetry in brachytherapy, analogous to the "small calibration field" commonly used in teletherapy to provide the reference conditions for the cross-calibration of high-resolution detectors. Under reference conditions, all known corrections for radiation quality, volume averaging and position of the chamber's effective point of measurement (EPOM) have to be applied. The study is therefore particularly devoted to (1) the experimental determination of the position of the source axis, (2) a general formulation for the volume averaging correction factor of small ionization chambers and (3) the experimental determination of the EPOM positions for the PinPoint chamber 31014 and the 3D-PinPoint chamber PTW 31022 (both PTW Freiburg, Germany). The distance of 30mm from the source axis was chosen as the reference condition for cross calibrations. This concept is realized with the instrumentation available in a hospital, a scanning-type water phantom, a software package for small field dosimetry and detectors typically used in clinical routine dosimetry. The present development of a method of in-phantom dose measurement under 192Ir brachytherapy conditions was performed in recognition of the primary role of dose calculations, e.g. according to the AAPM TG43 recommendations. But in addition, the methodology tested here is paving a practicable way for the experimental check of typical dose values under clinical conditions, should the need arise.


Asunto(s)
Braquiterapia/métodos , Radiometría , Braquiterapia/instrumentación , Calibración , Humanos , Radiometría/instrumentación , Dosificación Radioterapéutica
5.
Phys Med Biol ; 62(24): N561-N572, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29072195

RESUMEN

In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.


Asunto(s)
Braquiterapia , Fantasmas de Imagen , Dosis de Radiación , Radiometría/instrumentación , Agua , Humanos , Método de Montecarlo , Fotones/uso terapéutico , Dosificación Radioterapéutica
6.
Z Med Phys ; 26(3): 238-50, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26387927

RESUMEN

The application of various radiation detectors for brachytherapy dosimetry has motivated this study of the energy dependence of radiation quality correction factor kQ,M, the quotient of the detector responses under calibration conditions at a (60)Co unit and under the given non-reference conditions at the point of measurement, M, occurring in photon brachytherapy. The investigated detectors comprise TLD, radiochromic film, ESR, Si diode, plastic scintillator and diamond crystal detectors as well as ionization chambers of various sizes, whose measured response-energy relationships, taken from the literature, served as input data. Brachytherapy photon fields were Monte-Carlo simulated for an ideal isotropic (192)Ir point source, a model spherical (192)Ir source with steel encapsulation and a commercial HDR GammaMed Plus source. The radial source distance was varied within cylindrical water phantoms with outer radii ranging from 10 to 30cm and heights from 20 to 60cm. By application of this semiempirical method - originally developed for teletherapy dosimetry - it has been shown that factor kQ,M is closely correlated with a single variable, the fluence-weighted mean photon energy EF at the point of measurement. The radial profiles of EF obtained with either the commercial (192)Ir source or the two simplified source variants show little variation. The observed correlations between parameters kQ,M and EF are represented by fitting formulae for all investigated detectors, and further variation of the detector type is foreseen. The herewith established close correlation of radiation quality correction factor kQ,M with local mean photon energy EF can be regarded as a simple regularity, facilitating the practical application of correction factor kQ,M for in-phantom dosimetry around (192)Ir brachytherapy sources. EF values can be assessed by Monte Carlo simulation or measurement. A technique describing the local measurement of EF will be published separately.


Asunto(s)
Artefactos , Braquiterapia/instrumentación , Radioisótopos de Iridio/uso terapéutico , Garantía de la Calidad de Atención de Salud/métodos , Radiometría/instrumentación , Radiometría/métodos , Algoritmos , Braquiterapia/métodos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Radioisótopos de Iridio/análisis , Transferencia Lineal de Energía , Modelos Estadísticos , Método de Montecarlo , Fotones , Radiofármacos/análisis , Radiofármacos/uso terapéutico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Phys Med Biol ; 60(24): 9403-20, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26579946

RESUMEN

Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with (192)Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading (192)Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by the results of the dose simulations and the values of the linear attenuation coefficient, µ, over a large energy range, the balanced content of inorganic additives in a phantom material is regarded as the key feature, providing water equivalence with regard to the attenuation of the primary photons, the release of low-energy photons by Compton scattering, and their attenuation by a combination of the photoelectric and Compton effects.


Asunto(s)
Braquiterapia/métodos , Radioisótopos de Iridio , Fantasmas de Imagen , Fotones , Radiometría/métodos , Agua/química , Humanos , Método de Montecarlo , Plásticos , Poliestirenos
8.
Z Med Phys ; 24(1): 27-37, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23642543

RESUMEN

The present communication broadens the data base for determinations of the non-reference condition correction factor kNR needed in high-energy photon dosimetry to accomplish the use of various detectors under non-reference conditions. Following our previous strategy of calculating semiempirical values of kNR and correlating them with the mean photon energy Em at the point of measurement in a large water phantom, the values of Em are now stated for 6 and 15 MV photon radiations of accelerators with and without flattening filters, square field sizes from 1 to 30 cm side length and depths from 0 to 28 cm. The unambiguity of the kNR-Em correlation is again confirmed and is quantified by fitting formulae for air-filled ionization chambers, TLD detectors and Si diodes. This survey provides a practicable access to the kNR values, particularly for the non-water equivalent detectors to be used in small-field dosimetry.


Asunto(s)
Algoritmos , Aceleradores de Partículas/instrumentación , Radiometría/instrumentación , Radiometría/métodos , Transductores , Diseño de Equipo , Análisis de Falla de Equipo/métodos , Análisis de Falla de Equipo/normas , Internacionalidad , Fotones , Radiometría/normas , Dosificación Radioterapéutica , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Z Med Phys ; 22(3): 181-96, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22658451

RESUMEN

According to accepted dosimetry protocols, the "radiation quality correction factor"k(Q) accounts for the energy-dependent changes of detector responses under the conditions of clinical dosimetry for high-energy photon radiations. More precisely, a factor k(QR) is valid under reference conditions, i.e. at a point on the beam axis at depth 10 cm in a large water phantom, for 10×10 cm(2) field size, SSD 100 cm and the given radiation quality with quality index Q. Therefore, a further correction factor k(NR) has been introduced to correct for the influences of spectral quality changes when detectors are used under non-reference conditions such as other depths, field sizes and off-axis distances, while under reference conditions k(NR) is normalized to unity. In this paper, values of k(NR) are calculated for 6 and 15 MV photon beams, using published data of the energy-dependent responses of various radiation detectors to monoenergetic photon radiations, and weighting these responses with validated photon spectra of clinical high-energy photon beams from own Monte-Carlo-calculations for a wide variation of the non-reference conditions within a large water phantom. Our results confirm the observation by Scarboro et al. [26] that k(NR) can be represented by a unique function of the mean energy Em, weighted by the spectral photon fluence. Accordingly, the numerical variations of Em with depth, field size and off-axis distance have been provided. Throughout all considered conditions, the deviations of the k(NR) values from unity are at most 2% for a Farmer type ion chamber, and they remain below 15% for the thermoluminescent detectors LiF:Mg,Ti and LiF:Mg,Cu,P. For the shielded diode EDP-10, k(NR) varies from unity up to 20%, while the unshielded diode EDD-5 shows deviations up to 60% in the peripheral region. Thereby, the restricted application field of unshielded diodes has been clarified. For small field dosimetry purposes k(NR) can be converted into k(NCSF), the non-calibration condition correction factor normalized to unity for a 4×4 cm(2) calibration field. For the unshielded Si diodes needed in small-field dosimetry, the values of k(NCSF) are closer to unity than the associated k(NR) values.


Asunto(s)
Algoritmos , Fotones/uso terapéutico , Radiometría/instrumentación , Radiometría/normas , Radioterapia de Alta Energía/instrumentación , Dosificación Radioterapéutica , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Phys Med Biol ; 57(6): 1733-43, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22398213

RESUMEN

In clinical photon beams, the dose outside the geometrical field limits is produced by photons originating from (i) head leakage, (ii) scattering at the beam collimators and the flattening filter (head scatter) and (iii) scattering from the directly irradiated region of the patient or phantom (internal scatter). While the first two components can be modified, e.g. by reinforcement of shielding components or by re-modeling the filter system, internal scatter remains an unavoidable contributor to the peripheral dose. Its relative magnitude compared to the other components, its numerical variation with beam energy, field size and off-axis distance as well as its spectral distribution are evaluated in this study. We applied a detailed Monte Carlo (MC) model of our 6/15 MV Siemens Primus linear accelerator beam head, provided with ideal head leakage shielding conditions (multi-leaf collimator without gaps) to assess the head scatter contribution. Experimental values obtained under real shielding conditions were used to evaluate the head leakage contribution. It was found that the MC-computed internal scatter doses agree with the results of our previous measurements, that internal scatter is the major contributor to the peripheral dose in the near periphery while head leakage prevails in the far periphery, and that the lateral decline of the internal scatter dose can be represented by the sum of two exponentials, with an asymptotic tenth value of 18 to 19 cm. Internal scatter peripheral doses from various elementary beams are additive, so that their sum increases approximately in proportion with field size. The ratio between normalized internal scatter doses at 6 and 15 MV is approximately 2:1. The energy fluence spectra of the internal scatter component at all points of interest outside the field have peaks near 500 keV. The fact that the energy-shifted internal scatter constitutes the major contributor to the dose in the near periphery has a general bearing for dosimetry, i.e. for energy-dependent detector responses and dose conversion factors, for the relative biological effectiveness and for second primary malignancy risk estimates in the peripheral region.


Asunto(s)
Fotones/uso terapéutico , Radioterapia Conformacional , Fenómenos Biofísicos , Simulación por Computador , Humanos , Modelos Biológicos , Método de Montecarlo , Fantasmas de Imagen/estadística & datos numéricos , Radioterapia Conformacional/efectos adversos , Radioterapia Conformacional/estadística & datos numéricos , Dispersión de Radiación
11.
Phys Med Biol ; 56(14): 4355-76, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21709343

RESUMEN

A new concept for the design of flattening filters applied in the generation of 6 and 15 MV photon beams by clinical linear accelerators is evaluated by Monte Carlo simulation. The beam head of the Siemens Primus accelerator has been taken as the starting point for the study of the conceived beam head modifications. The direction-selective filter (DSF) system developed in this work is midway between the classical flattening filter (FF) by which homogeneous transversal dose profiles have been established, and the flattening filter-free (FFF) design, by which advantages such as increased dose rate and reduced production of leakage photons and photoneutrons per Gy in the irradiated region have been achieved, whereas dose profile flatness was abandoned. The DSF concept is based on the selective attenuation of bremsstrahlung photons depending on their direction of emission from the bremsstrahlung target, accomplished by means of newly designed small conical filters arranged close to the target. This results in the capture of large-angle scattered Compton photons from the filter in the primary collimator. Beam flatness has been obtained up to any field cross section which does not exceed a circle of 15 cm diameter at 100 cm focal distance, such as 10 × 10 cm(2), 4 × 14.5 cm(2) or less. This flatness offers simplicity of dosimetric verifications, online controls and plausibility estimates of the dose to the target volume. The concept can be utilized when the application of small- and medium-sized homogeneous fields is sufficient, e.g. in the treatment of prostate, brain, salivary gland, larynx and pharynx as well as pediatric tumors and for cranial or extracranial stereotactic treatments. Significant dose rate enhancement has been achieved compared with the FF system, with enhancement factors 1.67 (DSF) and 2.08 (FFF) for 6 MV, and 2.54 (DSF) and 3.96 (FFF) for 15 MV. Shortening the delivery time per fraction matters with regard to workflow in a radiotherapy department, patient comfort, reduction of errors due to patient movement and a slight, probably just noticable improvement of the treatment outcome due to radiobiological reasons. In comparison with the FF system, the number of head leakage photons per Gy in the irradiated region has been reduced at 15 MV by factors 1/2.54 (DSF) and 1/3.96 (FFF), and the source strength of photoneutrons was reduced by factors 1/2.81 (DSF) and 1/3.49 (FFF).


Asunto(s)
Método de Montecarlo , Fotones/uso terapéutico , Radioterapia Asistida por Computador/métodos , Humanos , Neutrones , Dosificación Radioterapéutica
12.
Z Med Phys ; 21(3): 183-97, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21530198

RESUMEN

The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of detector responses and dose conversion factors, as well as increases of the RBE have to be anticipated. Parameter P(D)(200 keV) can also be used as a guidance supporting the selection of a calibration geometry suitable for radiation dosimeters to be used in small radiation fields.


Asunto(s)
Modelos Teóricos , Aceleradores de Partículas , Fotones , Simulación por Computador , Humanos , Método de Montecarlo , Radiometría , Radioterapia , Reproducibilidad de los Resultados
13.
Phys Med Biol ; 55(14): 4011-27, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20577041

RESUMEN

The component analysis of the peripheral doses produced at typical accelerators such as the Siemens Primus 6/15 is regarded as an approach enabling technical strategies towards the reduction of second malignancies associated with photon beam radiotherapy. Suitable phantom and detector arrangements have been applied to show that the unavoidable peripheral dose contribution due to photon scattering from the directly irradiated part of the body or phantom does not constitute the entirety of the peripheral doses. Rather, there are peripheral dose contributions due to beam head leakage and to extrafocal radiation which can be regarded as partly avoidable. Simple methods of reducing beam head leakage from the Siemens Primus 6/15 linac are, for the crossplane direction, to install a pair of adjustable shielding blocks in the accessory holder and, for the inplane direction, to close all out-of-field leaf pairs of the multileaf collimator via the treatment planning system software. The relative efficiency of these shielding measures is largest in the case of small unavoidable dose contributions, i.e. for small fields and small depths. Methods of avoiding doses coming from extrafocal radiation are also envisaged for future research.


Asunto(s)
Fotones/uso terapéutico , Dosificación Radioterapéutica , Radioterapia/instrumentación , Radioterapia/métodos , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Dispersión de Radiación , Programas Informáticos
14.
Radiother Oncol ; 95(2): 158-65, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20138379

RESUMEN

BACKGROUND AND PURPOSE: Clinical evaluation of a novel dosimetric accessory serving the permanent supervision of MLC function. MATERIALS AND METHODS: The DAVID system (PTW-Freiburg, Germany) is a transparent, multi-wire transmission ionization chamber, placed in the accessory holder of the treatment head. Since each of the 37 individual wires is positioned exactly below the associated leaf pair of the MLC, its signal records the opening of this leaf pair during patient treatment. RESULTS: The DAVID system closes a gap in the quality assurance program, permitting the permanent in-vivo verification of IMRT plans. During dosimetric plan verification with the 2D-ARRAY (PTW-Freiburg, Germany), reference values of the 37 DAVID signals are collected, with which the DAVID readings recorded during daily patient treatment are compared. This comparison is visually displayed in the control room, and warning and alarm levels of any discrepancies can be defined. The properties of the DAVID system as a transmission device, its sensitivity to beam delivery and leaflet errors as well as its stability have been analyzed for clinically relevant examples. In a recent version, the DAVID system has been equipped with 80 wires. CONCLUSIONS: The DAVID system permits the on-line detection of clinically relevant MLC discrepancies in IMRT deliveries.


Asunto(s)
Garantía de la Calidad de Atención de Salud , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Dosis de Radiación
15.
Z Med Phys ; 19(4): 252-63, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19962083

RESUMEN

In photon-beam radiotherapy, the absorbed dose in an irradiated object contains a contribution by energy-degraded photons originating from Compton scatter processes at parts of the treatment head and within the absorber itself. These low-energy spectral components may lead to changes in the response of non-ideally water-equivalent radiation detectors, such as Si diodes and radiographic films, in the water/tissue dose conversion factors and in the relative biological effectiveness (RBE). As a simple means of accounting for these changes in spectral quality, the Monte Carlo calculated fraction of the kerma or absorbed dose contributed by scattered photons with energies not exceeding a certain cut-off value has previously been proposed as a useful parameter. In this paper, we present an equivalent experimental approach, providing a means for the spatial mapping of radiation quality. Its applicability will be demonstrated for the case of (60)Co and 6 MV photons. A twin-chamber combination of a Farmer type ionization chamber, equipped with a graphited PMMA outer electrode, and a chamber of the same design, but with an outer electrode made from copper, has been developed. The measured quantity is the signal ratio (SR) of the copper wall and graphited wall chambers. A correlation between the SR and the fraction of the air kerma respectively of the absorbed dose to water, contributed by photons with energies not exceeding 200 keV, has been established at a Theratron 780-C (60)Co teletherapy unit and at a Siemens Primus 6 MV linear accelerator. We also describe a two-dimensional version of the twin-chamber method using the PTW 2D-Array 256. Typical trends of parameter SR with depth and off-axis distance in water-equivalent phantoms have been observed. Thereby, a simple experimental method for the space-resolved assessment of the dose fraction attributable to low-energy Compton scattered photons can be presented as an innovative instrument of describing radiation quality in radiotherapy.


Asunto(s)
Fotones/uso terapéutico , Radioterapia/normas , Aire , Simulación por Computador , Diseño de Equipo , Humanos , Modelos Estadísticos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Primarias Secundarias/etiología , Fantasmas de Imagen , Dosis de Radiación , Dosificación Radioterapéutica , Dispersión de Radiación , Estroncio
16.
Z Med Phys ; 18(4): 301-6, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19205300

RESUMEN

The unshielded Si diode PTW 60012, used for accurate measurements of the transversal dose profiles of narrow photon beams, has been investigated with regard to its linearity, photon energy dependence and spatial resolution. The diode shows a slight supralinearity, i.e., increase of the response with pulse dose, by 3% over the pulse dose range 0.1 to 0.8 mGy. In p-type silicon, supralinearity results from the increased chance for radiation-induced electrons to escape recombination when the pulse dose increases. Over the energy range from 6 to 15 MV, the response decreases by about 4%. This small variation of the response results from partial compensation between the influences of the secondary electron energy on the mass stopping power ratio silicon/water and on electron backscattering from the silicon chip. The lateral response function of the examined diode has a full half width of 1.3 mm. Dose profiles of 5 mm half-width can still be recorded with negligible error.


Asunto(s)
Fotones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Adsorción , Humanos , Láseres de Semiconductores , Dosificación Radioterapéutica , Silicio
17.
Strahlenther Onkol ; 183(1): 43-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17225945

RESUMEN

PURPOSE: To investigate the attenuation of a carbon-fiber tabletop and a combiboard, alongside with the depth-dose profile in a solid-water phantom. MATERIAL AND METHODS: Depth-dose measurements were performed with a Roos chamber for 6- and 10-MV beams for a typical field size (15 cm x 15 cm, SSD [source-surface distance] 100 cm). A rigid-stem ionization chamber was used to measure transmission factors. RESULTS: Transmission factors varied between 93.6% and 97.3% for the 6-MV beam, and 95.1% and 97.7% for the 10-MV photon beam. The lowest transmission factors were observed for the oblique gantry angle of 150 degrees with the table-combiboard combination. The surface dose normalized to a depth of 5 cm increased from 59.4% (without table, 0 degrees gantry), to 108.6% (tabletop present, 180 degrees gantry), and further to 120% (table-combiboard combination) for 6-MV photon beam. For 10 MV, the increase was from 39.6% (without table), to 88.9% (with table), and to 105.6% (table-combiboard combination). For the 150 degrees angle (tablecombiboard combination), the dose increased from 59.4% to 120% (6 MV) and from 39% to 108.1% (10 MV). CONCLUSION: Transmission factors for tabletops and accessories directly interfering with the treatment beam should be measured and implemented into the treatment-planning process. The increased surface dose to the skin should be considered.


Asunto(s)
Lechos , Carbono , Fotones/uso terapéutico , Radiometría/métodos , Radioterapia de Alta Energía/instrumentación , Fibra de Carbono , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Radioterapia de Alta Energía/métodos , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...