Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 43, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588824

RESUMEN

BACKGROUND: Nannochloropsis is a marine microalga that has been extensively studied. The major carotenoid produced by this group of microalgae is violaxanthin, which exhibits anti-inflammatory, anti-photoaging, and antiproliferative activities. Therefore, it has a wide range of potential applications. However, large-scale production of this pigment has not been much studied, thereby limiting its industrial application. RESULTS: To develop a novel strain producing high amount of violaxanthin, various Nannochloropsis species were isolated from seawater samples and their violaxanthin production potential were compared. Of the strains tested, N. oceanica WS-1 exhibited the highest violaxanthin productivity; to further enhance the violaxanthin yield of WS-1, we performed gamma-ray-mediated random mutagenesis followed by colorimetric screening. As a result, Mutant M1 was selected because of its significant higher violaxanthin content and biomass productivity than WS-1 (5.21 ± 0.33 mg g- 1 and 0.2101 g L- 1 d- 1, respectively). Subsequently, we employed a 10 L-scale bioreactor to confirm the large-scale production potential of M1, and the results indicated a 43.54 % increase in violaxanthin production compared with WS-1. In addition, comparative transcriptomic analysis performed under normal light condition identified possible mechanisms associated with remediating photo-inhibitory damage and other key responses in M1, which seemed to at least partially explain enhanced violaxanthin content and delayed growth. CONCLUSIONS: Nannochloropsis oceanica mutant (M1) with enhanced violaxanthin content was developed and its physiological characteristics were investigated. In addition, enhanced production of violaxanthin was demonstrated in the large-scale cultivation. Key transcriptomic responses that are seemingly associated with different physiological responses of M1 were elucidated under normal light condition, the details of which would guide ongoing efforts to further maximize the industrial potential of violaxanthin producing strains.


Asunto(s)
Biomasa , Mutación , Estramenopilos , Estramenopilos/genética , Estramenopilos/crecimiento & desarrollo , Estramenopilos/aislamiento & purificación , Xantófilas/metabolismo
2.
Korean J Parasitol ; 58(3): 249-255, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32615738

RESUMEN

Toxoplasma gondii, a ubiquitous, intracellular parasite of the phylum Apicomplexa, infects an estimated one-third of the human population as well as a broad range of warm-blooded animals. We have observed that some tyrosine kinase inhibitors suppressed the growth of T. gondii within host ARPE-10 cells. Among them, afatinib, human epithermal growth factor receptor 2 and 4 (HER2/4) inhibitor, may be used as a therapeutic agent for inhibiting parasite growth with minimal adverse effects on host. In this report, we conducted a proteomic analysis to observe changes in host proteins that were altered via infection with T. gondii and the treatment of HER2/4 inhibitors. Secreting proteins were subjected to a procedure of micor basic reverse phase liquid chromatography, nano-liquid chromatography-mass spectrometry, and ingenuity pathway analysis serially. As a result, the expression level of heterogeneous nuclear ribonucleoprotein K, semaphorin 7A, a GPI membrane anchor, serine/threonine-protein phosphatase 2A, and calpain small subunit 1 proteins were significantly changed, and which were confirmed further by western blot analysis. Changes in various proteins, including these 4 proteins, can be used as a basis for explaining the effects of T. gondii infections and HER2/4 inhibitors.


Asunto(s)
Afatinib/farmacología , Afatinib/uso terapéutico , Interacciones Huésped-Parásitos , Proteínas/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/metabolismo , Antígenos CD/metabolismo , Western Blotting , Línea Celular , Proteínas Ligadas a GPI/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Proteína Fosfatasa 2/metabolismo , Proteómica/métodos , Semaforinas/metabolismo
3.
Structure ; 26(10): 1393-1398.e2, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30100359

RESUMEN

In the nucleus, RanGTP binding to importin dissociates the cargo. On the other hand, RanGTP enables exportin to bind export cargo and form the export complex by each exportin's own cargo selection mechanism. Here, we present two X-ray structures for Exportin-5 (Exp-5) alone and Exp-5:RanGTP intermediate complex. The structure of Exp-5 adopts a ring-shaped closed conformation by C-terminal anchor residues 1,167-1,179, interacting with N-terminal heat repeats 4-9. The closed form of Exp-5 is important for the stability of the cargo-free state. Interaction between Exp-5 and RanGTP induces elimination of intramolecular contacts of the C-terminal anchor. A large movement of N-terminal 1-9th heat repeats and C-terminal 19-20th heat repeats creates an open space for RanGTP accommodation. Exp-5 in Exp-5:RanGTP and Exp-5:RanGTP:pre-miRNA adopts the same conformation. RanGTP binding to Exp-5 creates a selective molecular cage area for accepting its cargoes, such as small double-stranded RNAs, without conformational change in Exp-5:RanGTP.


Asunto(s)
Carioferinas/química , Carioferinas/metabolismo , Proteína de Unión al GTP ran/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Proteína de Unión al GTP ran/química
4.
J Appl Phycol ; 30(4): 2297-2304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30147236

RESUMEN

Microalgae have been widely considered for the production of valuable products, such as lipid-based biofuel, value-added pigments, and anti-photo aging reagents. More recently, microalgae have been considered an alternative host for recombinant protein production because of their economic benefits and ecofriendly characteristics. Additionally, many microalgal strains identified to date are generally recognized as safe (GRAS); therefore, the use of microalgae-based technology is promising. However, basic studies on the genetic engineering of microalgae are rare, despite their importance. Particularly, inducible promoter systems that can be applied for strain engineering or recombinant protein production are rarely studied; hence, a number of challenging issues remain unsolved. Therefore, in this study, we focused on the development of a convenient and compact-inducible promoter system that can be used in microalgae. Based on previous success with plant systems, we employed the alcohol-inducible AlcR-P alcA system, which originates from the filamentous fungus, Aspergillus nidulans. This system comprises only two components, a regulatory protein, AlcR, and an inducible promoter, P alcA. Therefore, construction and transformation of the gene cassettes can be easily performed. Ethanol-dependent gene expression was observed in the transformants with no significant growth retardation or inducer consumption observed in the cells cultivated under optimized conditions.

5.
Plant Physiol ; 177(3): 1050-1065, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29769325

RESUMEN

Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyper-accumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and "omics" approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.


Asunto(s)
Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Metabolismo Energético/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfato/metabolismo , Autofagia/fisiología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/genética , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Metabolismo de los Lípidos/genética , Lípidos de la Membrana/genética , Lípidos de la Membrana/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Filogenia , Proteínas de Plantas/genética , Scenedesmus/efectos de los fármacos , Scenedesmus/metabolismo , Transducción de Señal , Almidón/genética , Almidón/metabolismo
6.
Nanoscale ; 9(26): 9210-9217, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28650486

RESUMEN

Multifunctional carbon-based nanodots (C-dots) are synthesized using atmospheric plasma treatments involving reactive gases (oxygen and nitrogen). Surface design was achieved through one-step plasma treatment of C-dots (AC-paints) from polyethylene glycol used as a precursor. These AC-paints show high fluorescence, low cytotoxicity and excellent cellular imaging capability. They exhibit bright fluorescence with a quantum yield twice of traditional C-dots. The cytotoxicity of AC-paints was tested on BEAS2B, THLE2, A549 and hep3B cell lines. The in vivo experiments further demonstrated the biocompatibility of AC-paints using zebrafish as a model, and imaging tests demonstrated that the AC-paints can be used as bio-labels (at a concentration of <5 mg mL-1). Particularly, the oxygen plasma-treated AC-paints (AC-paints-O) show antibacterial effects due to increased levels of reactive oxygen species (ROS) in AC-paints (at a concentration of >1 mg mL-1). AC-paints can effectively inhibit the growth of Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). Such remarkable performance of the AC-paints has important applications in the biomedical field and environmental systems.


Asunto(s)
Carbono/química , Fluorescencia , Gases em Plasma , Puntos Cuánticos/química , Acinetobacter baumannii/efectos de los fármacos , Animales , Antibacterianos/química , Línea Celular Tumoral , Escherichia coli/efectos de los fármacos , Humanos , Ensayo de Materiales , Polietilenglicoles , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
7.
Sci Rep ; 6: 29683, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27406992

RESUMEN

We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) - approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) - resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications.

8.
Small ; 12(2): 214-9, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26584654

RESUMEN

Recently, the appeal of 2D black phosphorus (BP) has been rising due to its unique optical and electronic properties with a tunable band gap (≈0.3-1.5 eV). While numerous research efforts have recently been devoted to nano- and optoelectronic applications of BP, no attention has been paid to promising medical applications. In this article, the preparation of BP-nanodots of a few nm to <20 nm with an average diameter of ≈10 nm and height of ≈8.7 nm is reported by a modified ultrasonication-assisted solution method. Stable formation of nontoxic phosphates and phosphonates from BP crystals with exposure in water or air is observed. As for the BP-nanodot crystals' stability (ionization and persistence of fluorescent intensity) in aqueous solution, after 10 d, ≈80% at 1.5 mg mL(-1) are degraded (i.e., ionized) in phosphate buffered saline. They showed no or little cytotoxic cell-viability effects in vitro involving blue- and green-fluorescence cell imaging. Thus, BP-nanodots can be considered a promising agent for drug delivery or cellular tracking systems.


Asunto(s)
Tecnología Biomédica/métodos , Nanopartículas/química , Fósforo/química , Animales , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fluorescencia , Humanos , Microscopía de Fuerza Atómica , Fenómenos Ópticos , Espectrometría Raman , Difracción de Rayos X
9.
Sci Rep ; 5: 12420, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26201431

RESUMEN

Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural substances, we report a new type of fluid-based fluorescent CD paints (C-paints) derived from polyethylene glycol (PEG; via simple ultrasound irradiation at room temperatures) and produced in quantum yields of up to ~14%. Additionally, C-paints possess a strong, UV- and visible-light-responsive photoluminescent (PL) property. Most especially, C-paints, by incorporation into a photocatalytic system, show additional roles in the emission of fluorescent light for activation of TiO2 nanoparticles (NPs) and the resultant detoxification of most organic dyes, thus further enabling embarkation in advanced water purification.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/síntesis química , Tecnología Química Verde/métodos , Pintura , Fotoquímica/métodos , Puntos Cuánticos/química , Catálisis/efectos de la radiación , Luz , Ensayo de Materiales , Puntos Cuánticos/ultraestructura
10.
Sci Rep ; 5: 8691, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25732720

RESUMEN

Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for nanoelectrical application, because of its direct-band-gap nature. For the first time, we report on robust BP@TiO2 hybrid photocatalysts offering enhanced photocatalytic performance under light irradiation in environmental and biomedical fields, with negligible affected on temperature and pH conditions, as compared with MoS2@TiO2 prepared by the identical synthesis method. Remarkably, in contrast to pure few layered BP, which, due to its intrinsic sensitivity to oxygen and humidity was readily dissolved after just several uses, the BP@TiO2 hybrid photocatalysts showed a ~92% photocatalytic activity after 15 runs. Thus, metal-oxide-stabilized BP photocatalysts can be practically applied as a promising alternative to graphene and MoS2.

11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 473-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25760597

RESUMEN

Hikeshi is a nuclear transport receptor required for cell survival after stress. It mediates heat-shock-induced nuclear import of 70 kDa heat-shock proteins (Hsp70s) through interactions with FG-nucleoporins (FG-Nups), which are proteins in nuclear pore complexes (NPCs). Here, the crystal structure of human Hikeshi is presented at 1.8 Šresolution. Hikeshi forms an asymmetric homodimer that is responsible for the interaction with Hsp70s. The asymmetry of Hikeshi arises from the distinct conformation of the C-terminal domain (CTD) and the flexibility of the linker regions of each monomer. Structure-guided mutational analyses showed that both the flexible linker region and the CTD are important for nuclear import of Hsp70. Pull-down assays revealed that only full-length Hsp70s can interact with Hikeshi. The N-terminal domain (NTD) consists of a jelly-roll/ß-sandwich fold structure which contains hydrophobic pockets involved in FG-Nup recognition. A unique extended loop (E-loop) in the NTD is likely to regulate the interactions of Hikeshi with FG-Nups. The crystal structure of Hikeshi explains how Hikeshi participates in the regulation of nuclear import through the recognition of FG-Nups and which part of Hikeshi affects its binding to Hsp70. This study is the first to yield structural insight into this highly unique import receptor.


Asunto(s)
Proteínas Portadoras/química , Proteínas Nucleares/química , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología
12.
Sci Rep ; 4: 6740, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25338845

RESUMEN

It is known that water purified by conventional TiO2 photocatalysts may not be safe enough for drinking, due to the toxicity by tiny existence of TiO2 nanoparticles after water treatment. We herein demonstrate a facile design of a three-dimensional (3D) TiO2 photocatalyst structure with which both the efficiency of purification and the safety level of the final purified water can be improved and ensured, respectively. The structure, consisting of 3D sulfur-doped TiO2 microtubes in nanotubes (eco-TiO2), is suitable for both environmental and bio-medical applications. Investigation of its formation mechanism reveals that anodic aluminum oxide (AAO), owing to a spatial constraint, causes a simple, nanoparticles-to-nanotubes structural rearrangement as a template for nanotube growth. It is found that eco-TiO2 can be activated under visible-light irradiation by non-metal (sulfur; S) doping, after which it shows visible-light photocatalytic activities over a range of solar energy. Importantly, an in vitro cytotoxicity test of well-purified water by eco-TiO2 confirms that eco-TiO2 satisfies the key human safety conditions.


Asunto(s)
Agua Potable , Titanio/toxicidad , Purificación del Agua , Óxido de Aluminio/química , Humanos , Nanopartículas/química , Nanotubos/química , Titanio/química
13.
Mater Sci Eng C Mater Biol Appl ; 42: 757-62, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25063177

RESUMEN

This study evaluates the utility of an antibacterial microneedle composed of green tea (GT) extract and hyaluronic acid (HA), for the efficient delivery of GT. These microneedles have the potential to be a patient-friendly method for the conventional sustained release of drugs. In this study, a fabrication method using a mold-based technique to produce GT/HA microneedles with a maximum area of ~50mm(2) with antibacterial properties was used to manufacture transdermal drug delivery systems. Fourier transform infrared (FTIR) spectrometry was carried out to observe the potential modifications in the microneedles, when incorporated with GT. The degradation rate of GT in GT/HA microneedles was controlled simply by adjusting the HA composition. The effects of different ratios of GT in the HA microneedles were determined by measuring the release properties. In HA microneedles loaded with 70% GT (GT70), a continuous higher release rate was sustained for 72h. The in vitro cytotoxicity assays demonstrated that GT/HA microneedles were not generally cytotoxic to Chinese hamster ovary cells (CHO-K1), human embryonic kidney cells (293T), and mouse muscle cells (C2C12), which were treated for 12 and 24h. Antimicrobial activity of the GT/HA microneedles was demonstrated by ~95% growth reduction of gram negative [Escherichia coli (E. coli), Pseudomonas putida (P. putida), and Salmonella typhimurium (S. typhimurium)] and gram positive bacteria [Staphylococcus aureus (S. Aureus) and Bacillus subtilis (B. subtilis)], with GT70. Furthermore, GT/HA microneedles reduced bacterial growth of infected wound sites in the skin and improved wound healing process of skin in rat model.


Asunto(s)
Antibacterianos/farmacología , Camellia sinensis/química , Microtecnología/instrumentación , Agujas , Extractos Vegetales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Bacterias/efectos de los fármacos , Infecciones Bacterianas , Células CHO , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Células HEK293 , Humanos , Ácido Hialurónico/química , Masculino , Extractos Vegetales/química , Ratas Sprague-Dawley , Parche Transdérmico
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1050-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699649

RESUMEN

Snail contributes to the epithelial-mesenchymal transition by suppressing E-cadherin in transcription processes. The Snail C2H2-type zinc-finger (ZF) domain functions both as a nuclear localization signal which binds to importin ß directly and as a DNA-binding domain. Here, a 2.5 Šresolution structure of four ZF domains of Snail1 complexed with importin ß is presented. The X-ray structure reveals that the four ZFs of Snail1 are required for tight binding to importin ß in the nuclear import of Snail1. The shape of the ZFs in the X-ray structure is reminiscent of a round snail, where ZF1 represents the head, ZF2-ZF4 the shell, showing a novel interaction mode, and the five C-terminal residues the tail. Although there are many kinds of C2H2-type ZFs which have the same fold as Snail, nuclear import by direct recognition of importin ß is observed in a limited number of C2H2-type ZF proteins such as Snail, Wt1, KLF1 and KLF8, which have the common feature of terminating in ZF domains with a short tail of amino acids.


Asunto(s)
Factores de Transcripción/química , Dedos de Zinc , beta Carioferinas/química , Transporte Activo de Núcleo Celular , Línea Celular , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , beta Carioferinas/metabolismo
15.
Sci Rep ; 4: 4665, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24721805

RESUMEN

Using a simple method of mass production of green carbon nanotags (G-tags) from harmful cyanobacteria, we developed an advanced and efficient imaging platform for the purpose of anticancer therapy. Approximately 100 grams of G-tags per 100 kilograms of harmful cyanobacteria were prepared using our eco-friendly approach. The G-tags possess high solubility, excellent photostability, and low cytotoxicity (<1.5 mg/mL for 24 h). Moreover, doxorubicin-conjugated G-tags (T-tags; >0.1 mg/mL) induced death in cancer cells (HepG2 and MCF-7) in-vitro at a higher rate than that of only G-tags while in-vivo mice experiment showed enhanced anticancer efficacy by T-tags at 0.01 mg/mL, indicating that the loaded doxorubicin retains its pharmaceutical activity. The cancer cell uptake and intracellular location of the G- and T-tags were observed. The results indicate that these multifunctional T-tags can deliver doxorubicin to the targeted cancer cells and sense the delivery of doxorubicin by activating the fluorescence of G-tags.


Asunto(s)
Carbono/química , Portadores de Fármacos/química , Nanoestructuras/química , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Células CHO , Células COS , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cricetinae , Cricetulus , Cianobacterias/metabolismo , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Células Hep G2 , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Trasplante Heterólogo
16.
J Microbiol ; 52(6): 490-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24610334

RESUMEN

Prephenate dehydratase is a key enzyme of the biosynthesis of L-phenylalanine in the organisms that utilize shikimate pathway. Since this enzymatic pathway does not exist in mammals, prephenate dehydratase can provide a new drug targets for antibiotics or herbicide. Prephenate dehydratase is an allosteric enzyme regulated by its end product. The enzyme composed of two domains, catalytic PDT domain located near the N-terminal and regulatory ACT domain located near the C-terminal. The allosteric enzyme is suggested to have two different conformations. When the regulatory molecule, phenylalanine, is not bound to its ACT domain, the catalytic site of PDT domain maintain open (active) state conformation as Sa-PDT structure. And the open state of its catalytic site become closed (allosterically inhibited) state if the regulatory molecule is bound to its ACT domain as Ct-PDT structure. However, the X-ray structure of prephenate dehydratase from Streptococcus mutans (Sm-PDT) shows that the catalytic site of Sm-PDT has closed state conformation without phenylalanine molecule bound to its regulatory site. The structure suggests a possibility that the binding of phenylalanine in its regulatory site may not be the only prerequisite for the closed state conformation of Sm-PDT.


Asunto(s)
Prefenato Deshidratasa/química , Streptococcus mutans/enzimología , Cristalografía por Rayos X/métodos
17.
Artículo en Inglés | MEDLINE | ID: mdl-23989161

RESUMEN

Snail is a C2H2-type zinc finger transcriptional repressor that induces epithelial-mesenchymal transition by repression of E-cadherin expression levels during embryonic development and tumour progression. Snail is imported into the nucleus by importin ß through direct binding with its four zinc finger domain. The complex between importin ß and Snail four zinc finger domain was crystallized in order to understand the nuclear transport mechanism of Snail. The constituents of the complex were separately expressed and were then co-purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 228.2, b = 77.5, c = 72.0 Å, ß = 100.9° and diffracted to 2.5 Šresolution.


Asunto(s)
Factores de Transcripción/química , beta Carioferinas/química , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Expresión Génica , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , beta Carioferinas/genética , beta Carioferinas/aislamiento & purificación
18.
J Hazard Mater ; 258-259: 10-8, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23692678

RESUMEN

We report highly active visible-light driven nitrogen-doped three-dimensional polycrystalline anatase TiO2 photocatalysts (N-3D TiO2) for environmental and biomedical applications. N-3D TiO2 is synthesized at a low temperature (<90°C) without thermal treatment via a modified hydrothermal process (HP) and ultrasound irradiation (UI). The N-3D TiO2 is additionally irradiated with visible-light to improve the hydroxylation of its surface. Under visible-light irradiation, the photocatalytic activity of visible-light irradiated N-3D TiO2 (*N-3D TiO2; [k]=1.435 h(-1)) is 26.1 times higher than that of 3D TiO2 ([k]=0.055 h(-1)). The *N-3D TiO2 is highly recyclable and retained 91.8% of the initial decolorization rate after fifteen cycles. Interestingly, the *N-3D TiO2 shows very strong antibacterial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) after exposure to visible-light for 3h. The antibacterial properties of *N-3D TiO2 are more effective than those of TiO2, 3D TiO2, and N-3D TiO2. More than 91.3% of the E. coli is sterilized after ten cycles. There are a large increase in the photocatalytic and antibacterial activity of *N-3D TiO2 relative to that of N-3D TiO2 owing to the hydroxylation of the N-3D TiO2 surface as a result of the visible-light irradiation. These results indicate that *N-3D TiO2 might have utility in several promising applications such as highly efficient water/air treatment, inactivation of pathogenic microorganisms, and solar-energy conversion.


Asunto(s)
Luz , Nitrógeno/química , Titanio/efectos de la radiación , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/efectos de la radiación , Catálisis , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Hidroxilación , Procesos Fotoquímicos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Luz Solar , Temperatura , Titanio/química , Titanio/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-22750872

RESUMEN

NORE1 is an important tumour suppressor in human cancers that interacts with the pro-apoptotic protein kinase MST1/2 through SARAH domains. The SARAH domain (residues 366-413) of human NORE1 was expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal diffracted to 2.7 Šresolution and belonged to space group P6(1)22, with unit-cell parameters a = b = 73.041, c = 66.092 Å, α = ß = 90, γ = 120°.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/química , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Cristalización , Cristalografía por Rayos X , Expresión Génica , Humanos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/aislamiento & purificación
20.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1531-3, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139158

RESUMEN

Outer membrane protein A from Acinetobacter baumannii (AbOmpA) is a major outer membrane protein and a key player in the bacterial pathogenesis that induces host cell death. AbOmpA is presumed to consist of an N-terminal ß-barrel transmembrane domain and a C-terminal periplasmic OmpA-like domain. In this study, the recombinant C-terminal periplasmic domain of AbOmpA was overexpressed in Escherichia coli, purified and crystallized using the vapour-diffusion method. A native diffraction data set was collected to a resolution of 2.0 Å using synchrotron radiation. The space group of the crystal was P2(1), with unit-cell parameters a = 58.24, b = 98.59, c = 97.96 Å, ß = 105.92°. The native crystal contained seven or eight molecules per asymmetric unit and had a calculated Matthews coefficient of 2.93 or 2.56 Å(3) Da(-1).


Asunto(s)
Acinetobacter baumannii/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Cristalización , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...