RESUMEN
Bio-energy systems with carbon capture and storage (BECCS) will be essential if countries are to meet the gas emission reduction targets established in the 2015 Paris Agreement. This study seeks to carry out a thermodynamic optimization and analysis of a BECCS technology for a typical Brazilian cogeneration plant. To maximize generated net electrical energy (MWe) and carbon dioxide CO2 capture (Mt/year), this study evaluated six cogeneration systems integrated with a chemical absorption process using MEA. A key performance indicator (gCO2/kWh) was also evaluated. The set of optimal solutions shows that the single regenerator configuration (REG1) resulted in more CO2 capture (51.9% of all CO2 emissions generated by the plant), penalized by 14.9% in the electrical plant's efficiency. On the other hand, the reheated configuration with three regenerators (Reheat3) was less power-penalized (7.41%) but had a lower CO2 capture rate (36.3%). Results showed that if the CO2 capture rates would be higher than 51.9%, the cogeneration system would reach a higher specific emission (gCO2/kWh) than the cogeneration base plant without a carbon capture system, which implies that low capture rates (<51%) in the CCS system guarantee an overall net reduction in greenhouse gas emissions in sugarcane plants for power and ethanol production.
RESUMEN
Wheat blast first emerged in Brazil in the mid-1980s and has recently caused heavy crop losses in Asia. Here we show how this devastating pathogen evolved in Brazil. Genetic analysis of host species determinants in the blast fungus resulted in the cloning of avirulence genes PWT3 and PWT4, whose gene products elicit defense in wheat cultivars containing the corresponding resistance genes Rwt3 and Rwt4 Studies on avirulence and resistance gene distributions, together with historical data on wheat cultivation in Brazil, suggest that wheat blast emerged due to widespread deployment of rwt3 wheat (susceptible to Lolium isolates), followed by the loss of function of PWT3 This implies that the rwt3 wheat served as a springboard for the host jump to common wheat.
Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Especificidad del Huésped/genética , Magnaporthe/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Brasil , Interacciones Huésped-Patógeno/genéticaRESUMEN
There is interest in finding the flammability limits of ethanol at reduced pressures for the future use of this biofuel in aeronautical applications taking into account typical commercial aviation altitude (<40,000 ft). The lower and upper flammability limits (LFL and UFL, respectively) for hydrated ethanol and anhydrous ethanol (92.6% and 99.5% p/p, respectively) were determined for a pressure of 101.3 kPa at temperatures between 0 and 200°C. A heating chamber with a spherical 20-l vessel was used. First, LFL and the UFL were determined as functions of temperature and atmospheric pressure to compare results with data published in the scientific literature. Second, after checking the veracity of the data obtained for standard atmospheric pressure, the work proceeded with reduced pressures in the same temperature range. 295 experiments were carried out in total; the first 80 were to calibrate the heating chamber and compare the results with those given in the published scientific literature. 215 experiments were performed both at atmospheric and reduced pressures. The results had a correlation with the values obtained for the LFL, but values for the UFL had some differences. With respect to the water content in ethanol, it was shown that the water vapor contained in the fuel can act as an inert substance, narrowing flammability.
Asunto(s)
Etanol/química , Incendios , PresiónRESUMEN
The lower and upper flammability limits of a fuel are key tools for predicting fire, assessing the possibility of explosion, and designing protection systems. Knowledge about the risks involved with the explosion of both gaseous and vaporized liquid fuel mixtures with air is very important to guarantee safety in industrial, domestic, and aeronautical applications. Currently, most countries use various standard experimental tests, which lead to different experimental values for these limits. A comprehensive literature review of the flammability limits of combustible mixtures is developed here in order to organize the theoretical and practical knowledge of the subject. The main focus of this paper is the review of the flammability data of ethanol-air mixtures available in the literature. In addition, the description of methodology for experiments to find the upper and lower limits of flammability of ethanol for aeronautical applications is discussed. A heated spherical 20L vessel was used. The mixtures were ignited with electrode rods placed in the center of the vessel, and the spark gap was 6.4mm. LFL and the UFL were determined for ethanol (hydrated ethanol 96% °INPM) as functions of temperature for atmospheric pressure to compare results with data published in the scientific literature.