Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Intell ; 12(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38392175

RESUMEN

Three Posnerian networks of attention (alerting, orienting, and executive control) have been distinguished on the bases of behavioural, neuropsychological, and neuroscientific evidence. Here, we examined the trajectories of these networks throughout the human lifespan using the various Attention Network Tests (ANTs), which were specifically developed to measure the efficacy of these networks. The ANT Database was used to identify relevant research, resulting in the inclusion of 36 publications. We conducted a graphical meta-analysis using network scores from each study, based on reaction time plotted as a function of age group. Evaluation of attentional networks from childhood to early adulthood suggests that the alerting network develops relatively quickly, and reaches near-adult level by the age of 12. The developmental pattern of the orienting network seems to depend on the information value of the spatial cues. Executive control network scores show a consistent decrease (improvement) with age in childhood. During adulthood (ages 19-75), changes in alerting depend on the modality of the warning signal, while a moderate increase in orienting scores was seen with increasing age. Whereas executive control scores, as measured in reaction time, increase (deterioration) from young adulthood into later adulthood an opposite trend is seen when scores are based on error rates.

2.
Nat Commun ; 15(1): 1221, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336824

RESUMEN

Exposure of plants to ultraviolet-B (UV-B) radiation initiates transcriptional responses that modify metabolism, physiology and development to enhance viability in sunlight. Many of these regulatory responses to UV-B radiation are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Following photoreception, UVR8 interacts directly with multiple proteins to regulate gene expression, but the mechanisms that control differential protein binding to initiate distinct responses are unknown. Here we show that UVR8 is phosphorylated at several sites and that UV-B stimulates phosphorylation at Serine 402. Site-directed mutagenesis to mimic Serine 402 phosphorylation promotes binding of UVR8 to REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, which negatively regulate UVR8 action. Complementation of the uvr8 mutant with phosphonull or phosphomimetic variants suggests that phosphorylation of Serine 402 modifies UVR8 activity and promotes flavonoid biosynthesis, a key UV-B-stimulated response that enhances plant protection and crop nutritional quality. This research provides a basis to understand how UVR8 interacts differentially with effector proteins to regulate plant responses to UV-B radiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Cromosómicas no Histona , Rayos Ultravioleta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Serina/metabolismo
3.
Plant J ; 114(2): 390-402, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36794876

RESUMEN

Directional movements impact the ability of plants to respond and adjust their growth accordingly to the prevailing light environment. The plasma-membrane associated protein, ROOT PHOTOTROPISM 2 (RPT2) is a key signalling component involved in chloroplast accumulation movement, leaf positioning, and phototropism, all of which are regulated redundantly by the ultraviolet/blue light-activated AGC kinases phototropin 1 and 2 (phot1 and phot2). We recently demonstrated that members of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)/RPT2-like (NRL) family in Arabidopsis thaliana, including RPT2, are directly phosphorylated by phot1. However, whether RPT2 is a substrate for phot2, and the biological significance of phot phosphorylation of RPT2 remains to be determined. Here, we show that RPT2 is phosphorylated by both phot1 and phot2 at a conserved serine residue (S591) within the C-terminal region of the protein. Blue light triggered the association of 14-3-3 proteins with RPT2 consistent with S591 acting as a 14-3-3 binding site. Mutation of S591 had no effect on the plasma membrane localization of RPT2 but reduced its functionality for leaf positioning and phototropism. Moreover, our findings indicate that S591 phosphorylation within the C-terminus of RPT2 is required for chloroplast accumulation movement to low level blue light. Taken together, these findings further highlight the importance of the C-terminal region of NRL proteins and how its phosphorylation contributes to phot receptor signalling in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fototropismo/genética , Fosforilación , Fototropinas/genética , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantas Modificadas Genéticamente/genética , Luz , Hojas de la Planta/metabolismo , Cloroplastos/metabolismo , Fosfoproteínas/metabolismo
5.
Microb Biotechnol ; 15(7): 2126-2139, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35312165

RESUMEN

The methylotrophic yeast Pichia pastoris is commonly used for the production of recombinant proteins at scale. The identification of an optimally overexpressing strain following transformation can be time and reagent consuming. Fluorescent reporters like GFP have been used to assist identification of superior producers, but their relatively big size, maturation requirements and narrow temperature range restrict their applications. Here, we introduce the use of iLOV, a flavin-based fluorescent protein, as a fluorescent marker to identify P. pastoris high-yielding strains easily and rapidly. The use of this fluorescent protein as a fusion partner is exemplified by the production of the antimicrobial peptide NI01, a difficult target to overexpress in its native form. iLOV fluorescence correlated well with protein expression level and copy number of the chromosomally integrated gene. An easy and simple medium-throughput plate-based screen directly following transformation is demonstrated for low complexity screening, while a high-throughput method using fluorescence-activated cell sorting (FACS) allowed for comprehensive library screening. Both codon optimization of the iLOV_NI01 fusion cassettes and different integration strategies into the P. pastoris genome were tested to produce and isolate a high-yielding strain. Checking the genetic stability, process reproducibility and following the purification of the active native peptide are eased by visualization of and efficient cleavage from the iLOV reporter. We show that this system can be used for expression and screening of several different antimicrobial peptides recombinantly produced in P. pastoris.


Asunto(s)
Péptidos Antimicrobianos , Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Saccharomycetales
6.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053501

RESUMEN

Cancers that metastasize to the lungs represent a major challenge in both basic and clinical cancer research. Oncolytic viruses are newly emerging options but successful delivery and choice of appropriate therapeutic armings are two critical issues. Using an immunocompetent murine K7M2-luc lung metastases model, the efficacy of MYXV armed with murine LIGHT (TNFSF14/CD258) expressed under virus-specific early/late promoter was tested in an advanced later-stage disease K7M2-luc model. Results in this model show that mLIGHT-armed MYXV, delivered systemically using ex vivo pre-loaded PBMCs as carrier cells, reduced tumor burden and increased median survival time. In vitro, when comparing direct infection of K7M2-luc cancer cells with free MYXV vs. PBMC-loaded virus, vMyx-mLIGHT/PBMCs also demonstrated greater cytotoxic capacity against the K7M2 cancer cell targets. In vivo, systemically delivered vMyx-mLIGHT/PBMCs increased viral reporter transgene expression levels both in the periphery and in lung tumors compared to unarmed MYXV, in a tumor- and transgene-dependent fashion. We conclude that vMyx-mLIGHT, especially when delivered using PBMC carrier cells, represents a new potential therapeutic strategy for solid cancers that metastasize to the lung.

7.
New Phytol ; 233(5): 2282-2293, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34923631

RESUMEN

Blue-light (BL) phototropin receptors (phot1 and phot2) regulate plant growth by activating NPH3/RPT2-like (NRL) family members. Little is known about roles for BL and phots in regulating plant immunity. We showed previously that Phytophthora infestans RXLR effector Pi02860 targets potato (St)NRL1, promoting its ability to enhance susceptibility by facilitating proteasome-mediated degradation of the immune regulator StSWAP70. This raises the question: do BL and phots negatively regulate immunity? We employed coimmunoprecipitation, virus-induced gene silencing, transient overexpression and targeted mutation to investigate contributions of phots to regulating immunity. Whereas transient overexpression of Stphot1 and Stphot2 enhances P. infestans colonization of Nicotiana benthamiana, silencing endogenous Nbphot1 or Nbphot2 reduces infection. Stphot1, but not Stphot2, suppressed the INF1-triggered cell death (ICD) immune response in a BL- and NRL1-dependent manner. Stphot1, when coexpressed with StNRL1, promotes degradation of StSWAP70, whereas Stphot2 does not. Kinase-dead Stphot1 fails to suppress ICD, enhance P. infestans colonization or promote StSWAP70 degradation. Critically, BL enhances P. infestans infection, which probably involves phots but not other BL receptors such as cryptochromes and F-box proteins ZTL1 and FKF1. We demonstrate that Stphot1 and Stphot2 play different roles in promoting susceptibility, and Stphot1 kinase activity is required for BL- and StNRL1-mediated immune suppression.


Asunto(s)
Phytophthora infestans , Fototropinas/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
8.
Nat Commun ; 12(1): 6129, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675214

RESUMEN

Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas 14-3-3/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Consenso , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Luz , Fosforilación , Fototropismo/efectos de la radiación , Unión Proteica/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Mol Ther Oncolytics ; 22: 539-554, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34553039

RESUMEN

Solid cancers that metastasize to the lungs represent a major therapeutic challenge. Current treatment paradigms for lung metastases consist of radiation therapy, chemotherapies, and surgical resection, but there is no single treatment or combination that is effective for all tumor types. To address this, oncolytic myxoma virus (MYXV) engineered to express human tumor necrosis factor (vMyx-hTNF) was tested after systemic administration in an immunocompetent mouse K7M2-Luc lung metastatic osteosarcoma model. Virus therapy efficacy against pre-seeded lung metastases was assessed after systemic infusion of either naked virus or ex vivo-loaded autologous bone marrow leukocytes or peripheral blood mononuclear cells (PBMCs). Results of this study showed that the PBMC pre-loaded strategy was the most effective at reducing tumor burden and increasing median survival time, but sequential intravenous multi-dosing with naked virus was comparably effective to a single infusion of PBMC-loaded virus. PBMC-loaded vMyx-hTNF also potentially synergized very effectively with immune checkpoint inhibitors anti-PD-1, anti-PD-L1, and anti-cytotoxic T lymphocyte associated protein 4 (CTLA-4). Finally, in addition to the pro-immune stimulation caused by unarmed MYXV, the TNF transgene of vMyx-hTNF further induced the unique expression of numerous additional cytokines associated with the innate and adaptive immune responses in this model. We conclude that systemic ex vivo virotherapy with TNF-α-armed MYXV represents a new potential strategy against lung metastatic cancers like osteosarcoma and can potentially act synergistically with established checkpoint immunotherapies.

10.
Vision Res ; 188: 251-261, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419713

RESUMEN

Oculomotor research shows that eye movements are primed toward the midpoint of an array of visual stimuli, such that an eye movement to a visual target is executed most rapidly when it appears near the midpoint of an earlier array. At longer intervals between the prime and target, this facilitatory effect can reverse to become inhibitory - such that eye movements are slower when made toward the midpoint - but the source of this inhibition is unclear. One of our prior studies suggests a global source: target proximity to the midpoint determines inhibition, consistent with the notion that oculomotor activation is responsible for the effect and the original definition of inhibition of return. A later study suggests a local source: target proximity to the nearest array element determines inhibition, consistent with the notion that repeat stimulation of an input pathway is responsible. To resolve the ambiguity we systematically test whether timing differences between studies altered the source of the inhibition. We find that both previously observed patterns are reproducible depending on the prime offset - target onset asynchrony. We also resolve the discrepancy by showing that when this asynchrony is less than 200 ms, target proximity to the array's midpoint and its proximity to any given array element can jointly determine inhibition, whereas when the asynchrony is approximately 200 ms, inhibition is robust at the midpoint of the array. At longer asynchronies, all inhibitory effects rapidly dissipate.


Asunto(s)
Movimientos Oculares , Inhibición Psicológica , Humanos , Estimulación Luminosa , Tiempo de Reacción , Movimientos Sacádicos
11.
New Phytol ; 229(6): 3108-3115, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33064858

RESUMEN

The last two decades have witnessed the emergence of optogenetics; a field that has given researchers the ability to use light to control biological processes at high spatiotemporal and quantitative resolutions, in a reversible manner with minimal side-effects. Optogenetics has revolutionized the neurosciences, increased our understanding of cellular signalling and metabolic networks and resulted in variety of applications in biotechnology and biomedicine. However, implementing optogenetics in plants has been less straightforward, given their dependency on light for their life cycle. Here, we highlight some of the widely used technologies in microorganisms and animal systems derived from plant photoreceptor proteins and discuss strategies recently implemented to overcome the challenges for using optogenetics in plants.


Asunto(s)
Optogenética , Plantas , Animales , Biotecnología , Luz , Proteínas de Plantas , Plantas/genética
12.
New Phytol ; 230(3): 1201-1213, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33280113

RESUMEN

Ferns appear in the fossil record some 200 Myr before angiosperms. However, as angiosperm-dominated forest canopies emerged in the Cretaceous period there was an explosive diversification of modern (leptosporangiate) ferns, which thrived in low, blue-enhanced light beneath angiosperm canopies. A mechanistic explanation for this transformative event in the diversification of ferns has remained elusive. We used physiological assays, transcriptome analysis and evolutionary bioinformatics to investigate a potential connection between the evolution of enhanced stomatal sensitivity to blue light in modern ferns and the rise of angiosperm-dominated forests in the geological record. We demonstrate that members of the largest subclade of leptosporangiate ferns, Polypodiales, have significantly faster stomatal response to blue light than more ancient fern lineages and a representative angiosperm. We link this higher sensitivity to levels of differentially expressed genes in blue-light signaling, particularly in the cryptochrome (CRY) signaling pathway. Moreover, CRYs of the Polypodiales examined show gene duplication events between 212.9-196.9 and 164.4-151.8 Ma, when angiosperms were emerging, which are lacking in other major clades of extant land plants. These findings suggest that evolution of stomatal blue-light sensitivity helped modern ferns exploit the shady habitat beneath angiosperm forest canopies, fueling their Cretaceous hyperdiversification.


Asunto(s)
Sustancias Explosivas , Helechos , Magnoliopsida , Evolución Biológica , Helechos/genética , Bosques , Fósiles , Magnoliopsida/genética , Filogenia
13.
Plant J ; 104(3): 679-692, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780529

RESUMEN

Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Luz , Mutación , Fosforilación , Fototropismo , Canales de Potasio/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética
14.
Mol Ther Oncolytics ; 18: 171-188, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32695875

RESUMEN

Multiple myeloma (MM) is a hematological malignancy of monoclonal plasma cells that remains incurable. Standard treatments for MM include myeloablative regimens and autologous cell transplantation for eligible patients. A major challenge of these treatments is the relapse of the disease due to residual MM in niches that become refractory to treatments. Therefore, novel therapies are needed in order to eliminate minimal residual disease (MRD). Recently, our laboratory reported that virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an allogeneic transplant mouse model. In this study, we demonstrate the capacity of donor autologous murine leukocytes, pre-armed with MYXV, to eliminate MRD in a BALB/c MM model. We report that MYXV-armed bone marrow (BM) carrier leukocytes are therapeutically superior to MYXV-armed peripheral blood mononuclear cells (PBMCs) or free virus. Importantly, when cured survivor mice were re-challenged with fresh myeloma cells, they developed immunity to the same MM that had comprised MRD. In vivo imaging demonstrated that autologous carrier cells armed with MYXV were very efficient at delivery of MYXV into the recipient tumor microenvironment. Finally, we demonstrate that treatment with MYXV activates the secretion of pro-immune molecules from the tumor bed. These results highlight the utility of exploiting autologous leukocytes to enhance tumor delivery of MYXV to treat MRD in vivo.

16.
Proc Natl Acad Sci U S A ; 116(25): 12550-12557, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31160455

RESUMEN

The ability to enhance photosynthetic capacity remains a recognized bottleneck to improving plant productivity. Phototropin blue light receptors (phot1 and phot2) optimize photosynthetic efficiency in Arabidopsis thaliana by coordinating multiple light-capturing processes. In this study, we explore the potential of using protein engineering to improve photoreceptor performance and thereby plant growth. We demonstrate that targeted mutagenesis can decrease or increase the photocycle lifetime of Arabidopsis phototropins in vitro and show that these variants can be used to reduce or extend the duration of photoreceptor activation in planta Our findings show that slowing the phototropin photocycle enhanced several light-capturing responses, while accelerating it reduced phototropin's sensitivity for chloroplast accumulation movement. Moreover, plants engineered to have a slow-photocycling variant of phot1 or phot2 displayed increased biomass production under low-light conditions as a consequence of their improved sensitivity. Together, these findings demonstrate the feasibility of engineering photoreceptors to manipulate plant growth and offer additional opportunities to enhance photosynthetic competence, particularly under suboptimal light regimes.


Asunto(s)
Arabidopsis/metabolismo , Biomasa , Fotorreceptores de Plantas/metabolismo , Fototropinas/metabolismo , Ingeniería de Proteínas , Cloroplastos/metabolismo , Luz , Mutagénesis , Fotorreceptores de Plantas/genética , Fotosíntesis , Fototropinas/genética
17.
Atten Percept Psychophys ; 81(5): 1209-1219, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30989582

RESUMEN

Conventional wisdom tells us that the appreciation of local (detail) and global (form and spatial relations) information from a scene is preferentially processed by central and peripheral vision, respectively. Using an eye monitor with high spatial and temporal precision, we sought to provide direct evidence for this idea by controlling whether carefully designed hierarchical scenes were viewed only with central vision (the periphery was masked), only with peripheral vision (the central region was masked), or with full vision. The scenes consisted of a neutral form (a D shape) composed of target circles or squares, or a target circle or square composed of neutral material (Ds). The task was for the participant to determine as quickly as possible whether the scene contained circle(s) or square(s). Increasing the size of the masked region had deleterious effects on performance. This deleterious effect was greater for the extraction of form information when the periphery was masked, and greater for the extraction of material information when central vision was masked, thus providing direct evidence for conventional ideas about the processing predilections of central and peripheral vision.


Asunto(s)
Percepción de Forma/fisiología , Campos Visuales/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Enmascaramiento Perceptual
18.
Plant Physiol ; 180(2): 1119-1131, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30918082

RESUMEN

Phototropin (phot) receptor kinases play important roles in promoting plant growth by controlling light-capturing processes, such as phototropism. Phototropism is mediated through the action of NON-PHOTOTROPIC HYPOCOTYL3 (NPH3), which is dephosphorylated following phot activation. However, the functional significance of this early signaling event remains unclear. Here, we show that the onset of phototropism in dark-grown (etiolated) seedlings of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) is enhanced by greening (deetiolation). Red and blue light were equally effective in promoting phototropism in Arabidopsis, consistent with our observations that deetiolation by phytochrome or cryptochrome was sufficient to enhance phototropism. Increased responsiveness did not result from an enhanced sensitivity to the phytohormone auxin, nor does it involve the phot-interacting protein, ROOT PHOTOTROPISM2. Instead, deetiolated seedlings showed attenuated levels of NPH3 dephosphorylation and diminished relocalization of NPH3 from the plasma membrane during phototropism. Likewise, etiolated seedlings that lack the PHYTOCHROME-INTERACTING FACTORS (PIFs) PIF1, PIF3, PIF4, and PIF5 displayed reduced NPH3 dephosphorylation and enhanced phototropism, consistent with their constitutive photomorphogenic phenotype in darkness. Phototropic enhancement could also be achieved in etiolated seedlings by lowering the light intensity to diminish NPH3 dephosphorylation. Thus, phototropism is enhanced following deetiolation through the modulation of a phosphorylation rheostat, which in turn sustains the activity of NPH3. We propose that this dynamic mode of regulation enables young seedlings to maximize their establishment under changing light conditions, depending on their photoautotrophic capacity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Etiolado/fisiología , Fototropismo/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Criptocromos/metabolismo , Etiolado/efectos de los fármacos , Etiolado/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Modelos Biológicos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fototropismo/efectos de los fármacos , Fototropismo/efectos de la radiación , Fitocromo/metabolismo , Agregado de Proteínas , Plantones/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de la radiación
19.
Proc Natl Acad Sci U S A ; 116(4): 1116-1125, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30610174

RESUMEN

UVR8 is a plant photoreceptor protein that regulates photomorphogenic and protective responses to UV light. The inactive, homodimeric state absorbs UV-B light, resulting in dissociation into monomers, which are considered to be the active state and comprise a ß-propeller core domain and intrinsically disordered N- and C-terminal tails. The C terminus is required for functional binding to signaling partner COP1. To date, however, structural studies have only been conducted with the core domain where the terminal tails have been truncated. Here, we report structural investigations of full-length UVR8 using native ion mobility mass spectrometry adapted for photoactivation. We show that, while truncated UVR8 photoconverts from a single conformation of dimers to a single monomer conformation, the full-length protein exists in numerous conformational families. The full-length dimer adopts both a compact state and an extended state where the C terminus is primed for activation. In the monomer the extended C terminus destabilizes the core domain to produce highly extended yet stable conformations, which we propose are the fully active states that bind COP1. Our results reveal the conformational diversity of full-length UVR8. We also demonstrate the potential power of native mass spectrometry to probe functionally important structural dynamics of photoreceptor proteins throughout nature.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Cromosómicas no Histona/química , Fotorreceptores de Plantas/química , Dominio Catalítico , Luz , Espectrometría de Masas/métodos , Proteínas de Plantas/química , Conformación Proteica , Rayos Ultravioleta
20.
J Photochem Photobiol B ; 185: 32-40, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29864723

RESUMEN

The geomagnetic field (GMF) is an environmental element whose instability affects plant growth and development. Despite known plant responses to GMF direction and intensity, the mechanism of magnetoreception in plants is still not known. Magnetic field variations affect many light-dependent plant processes, suggesting that the magnetoreception could require light. The objective of this work was to comprehensively investigate the influence of GMF on Arabidopsis thaliana (Col-0) photoreceptor signaling. Wild-type Arabidopsis seedlings and photoreceptor-deficient mutants (cry1cry2, phot1, phyA and phyAphyB) were exposed to near null magnetic field (NNMF, ≤40 nT) and GMF (~43 µT) under darkness and different light wavelengths. The GMF did not alter skotomorphogenic or photomorphogenic seedling development but had a significant impact on gene expression pathways downstream of cryptochrome and phytochrome photoactivation. GMF-induced changes in gene expression observed under blue light were partially associated with an alteration of cryptochrome activation. GMF impacts on phytochrome-regulated gene expression could be attributed to alterations in phytochrome protein abundance that were also dependent on the presence of cry1, cry2 and phot1. Moreover, the GMF was found to impact photomorphogenic-promoting gene expression in etiolated seedlings, indicating the existence of a light-independent magnetoreception mechanism. In conclusion, our data shows that magnetoreception alters photoreceptor signaling in Arabidopsis, but it does not necessarily depend on light.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Campos Magnéticos , Fitocromo/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Espectroscopía de Resonancia Magnética , Mutagénesis , Fosforilación/efectos de la radiación , Fotólisis/efectos de la radiación , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fitocromo/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...