Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-365015

RESUMEN

The effect of heat on SARS-CoV-2/England/2/2020 viability was assessed by plaque assay and virus culture. Heating to 56{degrees}C and 60{degrees}C for 15, 30 and 60 minutes led to a reduction in titre of between 2.1 and 4.9 log10 pfu/ml but complete inactivation was not observed. At 80{degrees}C plaques were observed after 15 and 30 minutes of heating, however after 60 minutes viable virus was only detected following virus culture. Heating to 80{degrees}C for 90 minutes and 95{degrees}C for 1 and 5 minutes resulted in no viable virus being detected. At 56{degrees}C and 60{degrees}C significant variability between replicates was observed and the titre often increased with heat-treatment time. Nucleic acids were extracted and tested by RT-PCR. Sensitivity of the RT-PCR was not compromised by heating to 56{degrees}C and 60{degrees}C. Heating to 80{degrees}C for 30 minutes or more and 95{degrees}C for 1 or 5 minutes however, resulted in an increase of at least three Ct values. This increase remained constant when different dilutions of virus underwent heat treatment. This indicates that high temperature heat inactivation of clinical samples prior to nucleic acid extraction could significantly affect the ability to detect virus in clinical samples from patients with lower viral loads by RT-PCR.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-194613

RESUMEN

The COVID-19 pandemic has necessitated a rapid multi-faceted response by the scientific community, bringing researchers, health officials and industry together to address the ongoing public health emergency. To meet this challenge, participants need an informed approach for working safely with the etiological agent, the novel human coronavirus SARS-CoV-2. Work with infectious SARS-CoV-2 is currently restricted to high-containment laboratories, but material can be handled at a lower containment level after inactivation. Given the wide array of inactivation reagents that are being used in laboratories during this pandemic, it is vital that their effectiveness is thoroughly investigated. Here, we evaluated a total of 23 commercial reagents designed for clinical sample transportation, nucleic acid extraction and virus inactivation for their ability to inactivate SARS-CoV-2, as well as seven other common chemicals including detergents and fixatives. As part of this study, we have also tested five filtration matrices for their effectiveness at removing the cytotoxic elements of each reagent, permitting accurate determination of levels of infectious virus remaining following treatment. In addition to providing critical data informing inactivation methods and risk assessments for diagnostic and research laboratories working with SARS-CoV-2, these data provide a framework for other laboratories to validate their inactivation processes and to guide similar studies for other pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...