Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 12: 632859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777102

RESUMEN

Objective: Environmental factors can influence obesity by epigenetic mechanisms. The aim of this study was to investigate obesity-related epigenetic changes and the potential for reversal of these changes in the liver of Göttingen minipigs subjected to diet interventions. Methods: High-throughput liquid hybridization capture-based bisulfite sequencing (LHC-BS) was used to quantify the methylation status of gene promotor regions in liver tissue in three groups of male castrated Göttingen minipigs: a standard chow group (SD, N = 7); a group fed high fat/fructose/cholesterol diet (FFC, N = 10) and a group fed high fat/fructose/cholesterol diet during 7 months and reversed to standard diet for 6 months (FFC/SD, N = 12). Expression profiling by qPCR of selected metabolically relevant genes was performed in liver tissue from all pigs. Results: The pigs in the FFC diet group became morbidly obese. The FFC/SD diet did not result in a complete reversal of the body weight to the same weight as in the SD group, but it resulted in reversal of all lipid related metabolic parameters. Here we identified widespread differences in the patterning of cytosine methylation of promoters between the different feeding groups. By combining detection of differentially methylated genes with a rank-based hypergeometric overlap algorithm, we identified 160 genes showing differential methylation in corresponding promoter regions in the FFC diet group when comparing with both the SD and FFC/SD groups. As expected, this differential methylation under FFC diet intervention induced de-regulation of several metabolically-related genes involved in lipid/cholesterol metabolism, inflammatory response and fibrosis generation. Moreover, five genes, of which one is a fibrosis-related gene (MMP9), were still perturbed after diet reversion. Conclusion: Our findings highlight the potential of exploring diet-epigenome interactions for treatment of obesity.

2.
Anim Genet ; 45(1): 59-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24033492

RESUMEN

Obesity has reached epidemic proportions globally and has become the cause of several major health risks worldwide. Presently, more than 100 loci have been related to obesity and metabolic traits in humans by genome-wide association studies. The complex genetic architecture behind obesity has triggered a need for the development of better animal models than rodents. The pig has emerged as a very promising biomedical model to study human obesity traits. In this study, we have characterized the expression patterns of six obesity-related genes, leptin (LEP), leptin receptor (LEPR), melanocortin 4 receptor (MC4R), fat mass and obesity associated (FTO), neuronal growth regulator 1 (NEGR)1 and adiponectin (ADIPOQ), in seven obesity-relevant tissues (liver; muscle; pancreas; hypothalamus; and retroperitoneal, subcutaneous and mesenteric adipose tissues) in two pig breeds (production pigs and Göttingen minipigs) that deviate phenotypically and genetically from each other with respect to obesity traits. We observe significant differential expression for LEP, LEPR and ADIPOQ in muscle and in all three adipose tissues. Interestingly, in pancreas, LEP expression is only detected in the fat minipigs. FTO shows significant differential expression in all tissues analyzed, and NEGR1 shows significant differential expression in muscle, pancreas, hypothalamus and subcutaneous adipose tissue. The MC4R transcript can be detected only in hypothalamus. In general, the expression profiles of the investigated genes are in accordance with those observed in human studies. Our study shows that both the differences between the investigated breeds and the phenotypic state with respect to obesity/leanness play a large role for differential expression of the obesity-related genes.


Asunto(s)
Obesidad/genética , Sus scrofa/genética , Transcriptoma , Adiponectina/genética , Tejido Adiposo/metabolismo , Animales , Cruzamiento , Moléculas de Adhesión Celular Neuronal/genética , Femenino , Humanos , Hipotálamo/metabolismo , Leptina/genética , Músculos/metabolismo , Páncreas/metabolismo , Receptor de Melanocortina Tipo 4/genética , Receptores de Leptina/genética
3.
Anim Genet ; 45(1): 67-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24106888

RESUMEN

The usefulness of Göttingen minipigs as models for obesity and obesity-related pathologies is well established. The low-grade inflammation associated with obesity involves a range of innate immune factors; however, to our knowledge, the impact of obesity on innate immune factor expression has not been studied in Göttingen minipigs. Therefore, we studied the expression of innate immune genes in liver and adipose tissues as well as serum concentrations of cytokines and acute phase proteins in obese vs. lean Göttingen minipigs. In the liver, of 35 investigated genes, the expression of nine was significantly different in obese pigs (three up-regulated, six down-regulated). Of 33 genes in adipose tissues, obesity was associated with changed expression of 12 genes in the visceral adipose tissue (VAT) (three up-regulated), 11 in the abdominal retroperitoneal adipose tissue (RPAT) (seven of these up-regulated) and eight in the subcutaneous adipose tissue (SAT) from the neck (five of which were up-regulated). Obesity-associated expression changes were observed for three genes in all adipose tissues, namely chemokine (C-C motif) ligand 3-like 1 (up-regulated), CD200 molecule (down-regulated) and interleukin 1 receptor antagonist (up-regulated) with interleukin 1 receptor antagonist being the most highly regulated gene in both VAT and RPAT. Looking at patterns of expression across the three types of adipose tissues, obesity was associated with an increased number of acute phase proteins differentially expressed between adipose tissues and a decreased tissue-specific expression of cytokines and chemokines. In contrast to obese humans, no changes in serum concentrations of haptoglobin, C-reactive protein, serum amyloid A, tumor necrosis factor-α and interleukin 6 were found in obese Göttingen minipigs.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Citocinas/sangre , Obesidad/genética , Porcinos Enanos/inmunología , Grasa Abdominal/metabolismo , Animales , Antígenos CD/genética , Quimiocina CCL3/genética , Femenino , Expresión Génica , Inmunidad Innata/genética , Proteína Antagonista del Receptor de Interleucina 1/genética , Grasa Intraabdominal/metabolismo , Obesidad/inmunología , Grasa Subcutánea/metabolismo , Porcinos , Porcinos Enanos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...