Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
2.
Plant Physiol ; 189(4): 1943-1960, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604104

RESUMEN

Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ornitina/genética , Ornitina/metabolismo , Hojas de la Planta/metabolismo , Senescencia de la Planta , Factores de Transcripción/metabolismo
3.
Plant Physiol ; 177(1): 132-150, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29523713

RESUMEN

In plants, an individually darkened leaf initiates senescence much more rapidly than a leaf from a whole darkened plant. Combining transcriptomic and metabolomic approaches in Arabidopsis (Arabidopsis thaliana), we present an overview of the metabolic strategies that are employed in response to different darkening treatments. Under darkened plant conditions, the perception of carbon starvation drove a profound metabolic readjustment in which branched-chain amino acids and potentially monosaccharides released from cell wall loosening became important substrates for maintaining minimal ATP production. Concomitantly, the increased accumulation of amino acids with a high nitrogen-carbon ratio may provide a safety mechanism for the storage of metabolically derived cytotoxic ammonium and a pool of nitrogen for use upon returning to typical growth conditions. Conversely, in individually darkened leaf, the metabolic profiling that followed our 13C-enrichment assays revealed a temporal and differential exchange of metabolites, including sugars and amino acids, between the darkened leaf and the rest of the plant. This active transport could be the basis for a progressive metabolic shift in the substrates fueling mitochondrial activities, which are central to the catabolic reactions facilitating the retrieval of nutrients from the senescing leaf. We propose a model illustrating the specific metabolic strategies employed by leaves in response to these two darkening treatments, which support either rapid senescence or a strong capacity for survival.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Hojas de la Planta/fisiología , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Metabolómica/métodos , Modelos Biológicos , Pigmentación , Hojas de la Planta/metabolismo , Almidón/metabolismo
4.
Plant Physiol ; 172(4): 2132-2153, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27744300

RESUMEN

The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of α-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Arabidopsis/genética , Respiración de la Célula , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Mitocondriales , Genes de Plantas , Redes y Vías Metabólicas/genética , Metabolómica , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Hojas de la Planta/ultraestructura , Transcripción Genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA