Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Small ; 20(34): e2311821, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597689

RESUMEN

Lithium-air battery (LAB) is regarded as one of the most promising energy storage systems. However, the challenges arising from the lithium metal anode have significantly impeded the progress of LAB development. In this study, cellulose-based filter paper (FP) is utilized as a separator for ambient Li-air batteries to suppress dendrite growth and prevent H2O crossover. Thermogravimetric analysis and molecular spectrum reveal that FP enables ambient Li-air battery operation due to its surface functional groups derived from cellulose. The oxygen-enriched surface of cellulose not only enhances ion conductivity but also captures water and confines solvent molecules, thereby mitigating anode corrosion and side reactions. Compared with commercial glassfiber (GF) separator, this cellulose-based FP separator is cheaper, renewable, and environmentally friendly. Moreover, it requires less electrolyte while achieving prolonged and stable cycle life under real air environment conditions. This work presents a novel approach to realizing practical Li-air batteries by capturing water on the separator's surface. It also provides insights into the exploration and design of separators for enabling practical Li-air batteries toward their commercialization.

2.
Dalton Trans ; 52(18): 5870-5881, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36939077

RESUMEN

Electrochromic supercapacitors (ECSCs) have recently received growing attention for potential smart energy storage components in intelligent electronics. However, in the development of ECSCs, the design and assembly of high-performance electrode materials remain ongoing challenges. In this study, Ti3C2Tx MXene and polyoxotungstate (P2W18) were deposited on TiO2 nanowires to construct a unique three-dimensional (3D) porous hybrid film, NW@MXene/P2W18, via a convenient layer-by-layer self-assembly approach. The 3D porous structure of the nanocomposite reduced the aggregation and stacking of Ti3C2Tx MXene nanosheets during self-assembly, leading to the formation of unobstructed ion diffusion channels and interfacial charge transfer between adjacent layers, resulting in a good electrochemical performance. Compared to the tightly packed structure, the porous hybrid film demonstrated an enhanced electrochromic energy storage performance with a higher areal capacitance (i.e., 19.0 mF cm-2 at a current density of 0.6 mA cm-2), in addition to a high cycling stability (i.e., 90.7% retention rate after 2000 cycles), and an excellent color rendering efficiency. Subsequently, an asymmetric ECSC was fabricated using an NW@MXene/P2W18 film as the cathode and a TiO2 nanowire film as the anode. This ECSC exhibited a high areal capacitance of 4.0 mF cm-2 at a current density of 0.1 mA cm-2 with a wide operating window of 4.5 V, whilst also achieving high-speed color switching between olive green and dark blue during the charge/discharge processes, ultimately offering new avenues for the development of electrochromic energy storage electrode materials and the design of novel devices.

3.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807536

RESUMEN

Polyoxometalates (POMs) demonstrate potential for application in the development of integrated smart energy devices based on bifunctional electrochromic (EC) optical modulation and electrochemical energy storage. Herein, a nanocomposite thin film composed of a vanadium-substituted Dawson-type POM, i.e., K7[P2W17VO62]·18H2O, and TiO2 nanowires were constructed via the combination of hydrothermal and layer-by-layer self-assembly methods. Through scanning electron microscopy and energy-dispersive spectroscopy characterisations, it was found that the TiO2 nanowire substrate acts as a skeleton to adsorb POM nanoparticles, thereby avoiding the aggregation or stacking of POM particles. The unique three-dimensional core-shell structures of these nanocomposites with high specific surface areas increases the number of active sites during the reaction process and shortens the ion diffusion pathway, thereby improving the electrochemical activities and electrical conductivities. Compared with pure POM thin films, the composite films showed improved EC properties with a significant optical contrast (38.32% at 580 nm), a short response time (1.65 and 1.64 s for colouring and bleaching, respectively), an excellent colouration efficiency (116.5 cm2 C-1), and satisfactory energy-storage properties (volumetric capacitance = 297.1 F cm-3 at 0.2 mA cm-2). Finally, a solid-state electrochromic energy-storage (EES) device was fabricated using the composite film as the cathode. After charging, the constructed device was able to light up a single light-emitting diode for 20 s. These results highlight the promising features of POM-based EES devices and demonstrate their potential for use in a wide range of applications, such as smart windows, military camouflage, sensors, and intelligent systems.


Asunto(s)
Nanocables , Aniones , Electrodos , Nanocables/química , Polielectrolitos , Titanio , Vanadio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...