Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Eur Respir J ; 64(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117429

RESUMEN

BACKGROUND: Recurrent respiratory tract infections (rRTIs) are a common reason for immunodiagnostic testing in children, which relies on serum antibody level measurements. However, because RTIs predominantly affect the respiratory mucosa, serum antibodies may inaccurately reflect local immune defences. We investigated antibody responses in saliva and their interplay with the respiratory microbiota in relation to RTI severity and burden in young children with rRTIs. METHODS: We conducted a prospective cohort study including 100 children aged <10 years with rRTIs, their family members and healthy healthcare professionals. Total and polyreactive antibody concentrations were determined in serum and saliva (ELISA); respiratory microbiota composition (16S rRNA sequencing) and respiratory viruses (quantitative PCR) were characterised in nasopharyngeal swabs. Proteomic analysis (Olink) was performed on saliva and serum samples. RTI symptoms were monitored with a daily mobile phone application and assessed using latent class analysis and negative binomial mixed models. RESULTS: Serum antibody levels were not associated with RTI severity. Strikingly, 28% of salivary antibodies and only 2% of serum antibodies displayed polyreactivity (p<0.001). Salivary polyreactive IgA was negatively associated with recurrent lower RTIs (adjusted OR 0.80, 95% CI 0.67-0.94) and detection of multiple respiratory viruses (adjusted OR 0.76, 95% CI 0.61-0.96). Haemophilus influenzae abundance was positively associated with RTI symptom burden (regression coefficient 0.05, 95% CI 0.02-0.08). CONCLUSION: These results highlight the importance of mucosal immunity in RTI severity and burden, and suggest that the level of salivary polyreactive IgA and H. influenzae abundance may serve as indicators of infection severity and burden in young children with rRTIs.


Asunto(s)
Haemophilus influenzae , Recurrencia , Infecciones del Sistema Respiratorio , Saliva , Humanos , Masculino , Femenino , Haemophilus influenzae/inmunología , Estudios Prospectivos , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/diagnóstico , Preescolar , Saliva/inmunología , Lactante , Niño , Índice de Severidad de la Enfermedad , Anticuerpos Antibacterianos/sangre , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/diagnóstico , Anticuerpos Antivirales/sangre , Inmunoglobulina A/sangre , ARN Ribosómico 16S/genética
2.
Cell ; 187(17): 4571-4585.e15, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39094567

RESUMEN

Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.


Asunto(s)
Microbiota , Humanos , Anciano , Preescolar , Adulto , Niño , Persona de Mediana Edad , Adolescente , Anciano de 80 o más Años , Masculino , Femenino , Lactante , Adulto Joven , ARN Ribosómico 16S/genética , Estudios Transversales , Recién Nacido , Sistema Respiratorio/microbiología , Longevidad , Nasofaringe/microbiología , Saliva/microbiología , Ambiente
3.
World J Clin Cases ; 12(21): 4748-4754, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070804

RESUMEN

BACKGROUND: Granulomatous lobular mastitis (GLM) is a rare benign inflammatory disease of the breast and is classified under comedo mastitis in traditional Chinese medicine (TCM). The etiology of this disease is unknown, and it mainly occurs in women of childbearing age. The diagnosis depends on histopathological biopsy. At present, there is no systematic and standardized treatment plan for GLM. In the absence of evidence supporting an infectious etiology, affected patients might continue to receive multiple courses of antibiotics and unnecessary surgery. CASE SUMMARY: A 37-year-old Chinese woman with a history of coronavirus disease 2019 infection presented with swelling and pain in the left breast. She also had erythema, nodules in the lower extremities, arthritis in both knees, cough, and headache. In the early stage of GLM, the mass was not significantly reduced by conservative treatment with internal application of TCM; hence, surgical treatment was carried out. The aim of postoperative treatment was to drain the pus, eliminate the necrosed tissue, and expand the muscles; fumigation and washing using TCM was applied. CONCLUSION: Combined internal and external treatment with TCM, following the principle of "Prioritize internal treatment before ulceration and emphasize external treatment after ulceration" was effective in our patient with GLM. The prognosis was good. We believe that TCM offered valuable therapeutic benefits in this disease.

4.
Sci Rep ; 14(1): 13928, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886476

RESUMEN

Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.


Asunto(s)
Catelicidinas , Infecciones por Virus Sincitial Respiratorio , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Humanos , Femenino , Masculino , Lactante , Recién Nacido , Virus Sincitial Respiratorio Humano/inmunología , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Mucosa Nasal/inmunología
5.
J Allergy Clin Immunol ; 153(6): 1574-1585.e14, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467291

RESUMEN

BACKGROUND: The respiratory microbiome has been associated with the etiology and disease course of asthma. OBJECTIVE: We sought to assess the nasopharyngeal microbiota in children with a severe asthma exacerbation and their associations with medication, air quality, and viral infection. METHODS: A cross-sectional study was performed among children aged 2 to 18 years admitted to the medium care unit (MCU; n = 84) or intensive care unit (ICU; n = 78) with an asthma exacerbation. For case-control analyses, we matched all cases aged 2 to 6 years (n = 87) to controls in a 1:2 ratio. Controls were participants of either a prospective case-control study or a longitudinal birth cohort (n = 182). The nasopharyngeal microbiota was characterized by 16S-rRNA-gene sequencing. RESULTS: Cases showed higher Shannon diversity index (ICU and MCU combined; P = .002) and a distinct microbial community composition when compared with controls (permutational multivariate ANOVA R2 = 1.9%; P < .001). We observed significantly higher abundance of Staphylococcus and "oral" taxa, including Neisseria, Veillonella, and Streptococcus spp. and a lower abundance of Dolosigranulum pigrum, Corynebacterium, and Moraxella spp. (MaAsLin2; q < 0.25) in cases versus controls. Furthermore, Neisseria abundance was associated with more severe disease (ICU vs MCU MaAslin2, P = .03; q = 0.30). Neisseria spp. abundance was also related with fine particulate matter exposure, whereas Haemophilus and Streptococcus abundances were related with recent inhaled corticosteroid use. We observed no correlations with viral infection. CONCLUSIONS: Our results demonstrate that children admitted with asthma exacerbations harbor a microbiome characterized by overgrowth of Staphylococcus and "oral" microbes and an underrepresentation of beneficial niche-appropriate commensals. Several of these associations may be explained by (environmental or medical) exposures, although cause-consequence relationships remain unclear and require further investigations.


Asunto(s)
Asma , Microbiota , Nasofaringe , Humanos , Asma/microbiología , Niño , Preescolar , Masculino , Nasofaringe/microbiología , Femenino , Adolescente , Estudios Transversales , Estudios de Casos y Controles , ARN Ribosómico 16S/genética , Progresión de la Enfermedad , Estudios Prospectivos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación
6.
EBioMedicine ; 98: 104868, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37950996

RESUMEN

BACKGROUND: Mycoplasma pneumoniae is a common cause of community-acquired pneumonia in school-aged children and can be preceded by asymptomatic carriage. However, its role in recurrent respiratory tract infections is unclear. We studied the prevalence of M.pneumoniae carriage in children with recurrent respiratory infections and identified associated factors. METHODS: We tested M.pneumoniae carriage by qPCR in children with recurrent infections and their healthy family members in a cross-sectional study. Serum and mucosal total and M.pneumoniae-specific antibody levels were measured by ELISA and nasopharyngeal microbiota composition was characterized by 16S-rRNA sequencing. FINDINGS: Prevalence of M.pneumoniae carriage was higher in children with recurrent infections (68%) than their family members without infections (47% in siblings and 27% in parents). M.pneumoniae carriage among family members appeared to be associated with transmission within the household, likely originating from the affected child. In logistic regression corrected for age and multiple comparisons, IgA (OR 0.16 [0.06-0.37]) and total IgG deficiency (OR 0.15 [0.02-0.74]) were less prevalent in M.pneumoniae carriers (n = 78) compared to non-carriers (n = 36). In multivariable analysis, the nasopharyngeal microbiota of M.pneumoniae carriers had lower alpha diversity (OR 0.27 [0.09-0.67]) and a higher abundance of Haemophilus influenzae (OR 45.01 [2.74-1608.11]) compared to non-carriers. INTERPRETATION: M.pneumoniae carriage is highly prevalent in children with recurrent infections and carriers have a less diverse microbiota with an overrepresentation of disease-associated microbiota members compared to non-carriers. Given the high prevalence of M.pneumoniae carriage and the strong association with H. influenzae, we recommend appropriate antibiotic coverage of M.pneumoniae and H. influenzae in case of suspected pneumonia in children with recurrent respiratory tract infections or their family members. FUNDING: Wilhelmina Children's Hospital Research Fund, 'Christine Bader Stichting Irene KinderZiekenhuis', Sophia Scientific Research Foundation, ESPID Fellowship funded by Seqirus, Hypatia Fellowship funded by Radboudumc and The Netherlands Organisation for Health Research and Development (ZonMW VENI grant to LM Verhagen).


Asunto(s)
Microbiota , Infecciones Neumocócicas , Neumonía , Infecciones del Sistema Respiratorio , Niño , Humanos , Lactante , Streptococcus pneumoniae/genética , Mycoplasma pneumoniae/genética , Infecciones Neumocócicas/epidemiología , Estudios Transversales , Reinfección , Nasofaringe , Haemophilus influenzae , Portador Sano/epidemiología
7.
Microbiol Spectr ; 11(3): e0405722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199622

RESUMEN

16S-based sequencing provides broader information on the respiratory microbial community than conventional culturing. However, it (often) lacks species- and strain-level information. To overcome this issue, we used 16S rRNA-based sequencing results from 246 nasopharyngeal samples obtained from 20 infants with cystic fibrosis (CF) and 43 healthy infants, which were all 0 to 6 months old, and compared them to both standard (blind) diagnostic culturing and a 16S-sequencing-informed "targeted" reculturing approach. Using routine culturing, we almost uniquely detected Moraxella catarrhalis, Staphylococcus aureus, and Haemophilus influenzae (42%, 38%, and 33% of samples, respectively). Using the targeted reculturing approach, we were able to reculture 47% of the top-5 operational taxonomical units (OTUs) in the sequencing profiles. In total, we identified 60 species from 30 genera with a median of 3 species per sample (range, 1 to 8). We also identified up to 10 species per identified genus. The success of reculturing the top-5 genera present from the sequencing profile depended on the genus. In the case of Corynebacterium being in the top 5, we recultured them in 79% of samples, whereas for Staphylococcus, this value was only 25%. The success of reculturing was also correlated with the relative abundance of those genera in the corresponding sequencing profile. In conclusion, revisiting samples using 16S-based sequencing profiles to guide a targeted culturing approach led to the detection of more potential pathogens per sample than conventional culturing and may therefore be useful in the identification and, consequently, treatment of bacteria considered relevant for the deterioration or exacerbation of disease in patients like those with CF. IMPORTANCE Early and effective treatment of pulmonary infections in cystic fibrosis is vital to prevent chronic lung damage. Although microbial diagnostics and treatment decisions are still based on conventional culture methods, research is gradually focusing more on microbiome and metagenomic-based approaches. This study compared the results of both methods and proposed a way to combine the best of both worlds. Many species can relatively easily be recultured based on the 16S-based sequencing profile, and it provides more in-depth information about the microbial composition of a sample than that obtained through routine (blind) diagnostic culturing. Still, well-known pathogens can be missed by both routine diagnostic culture methods as well as by targeted reculture methods, sometimes even when they are highly abundant, which may be a consequence of either sample storage conditions or antibiotic treatment at the time of sampling.


Asunto(s)
Fibrosis Quística , Microbiota , Lactante , Humanos , Niño , Recién Nacido , Fibrosis Quística/diagnóstico , Fibrosis Quística/microbiología , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Bacterias/genética , Microbiota/genética
8.
Cell Host Microbe ; 31(3): 447-460.e6, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36893737

RESUMEN

Early-life microbiota seeding and subsequent development is crucial to future health. Cesarean-section (CS) birth, as opposed to vaginal delivery, affects early mother-to-infant transmission of microbes. Here, we assess mother-to-infant microbiota seeding and early-life microbiota development across six maternal and four infant niches over the first 30 days of life in 120 mother-infant pairs. Across all infants, we estimate that on average 58.5% of the infant microbiota composition can be attributed to any of the maternal source communities. All maternal source communities seed multiple infant niches. We identify shared and niche-specific host/environmental factors shaping the infant microbiota. In CS-born infants, we report reduced seeding of infant fecal microbiota by maternal fecal microbes, whereas colonization with breastmilk microbiota is increased when compared with vaginally born infants. Therefore, our data suggest auxiliary routes of mother-to-infant microbial seeding, which may compensate for one another, ensuring that essential microbes/microbial functions are transferred irrespective of disrupted transmission routes.


Asunto(s)
Microbiota , Madres , Femenino , Embarazo , Humanos , Lactante , Parto Obstétrico , Cesárea , Heces
9.
Pediatr Infect Dis J ; 42(1): 59-65, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476532

RESUMEN

BACKGROUND: Respiratory tract infections (RTIs) in infants are often caused by viruses. Although respiratory syncytial virus (RSV), influenza virus and human metapneumovirus (hMPV) can be considered the most pathogenic viruses in children, rhinovirus (RV) is often found in asymptomatic infants as well. Little is known about the health consequences of viral presence, especially early in life. We aimed to examine the dynamics of (a)symptomatic viral presence and relate early viral detection to susceptibility to RTIs in infants. METHODS: In a prospective birth cohort of 117 infants, we tested 1304 nasopharyngeal samples obtained from 11 consecutive regular sampling moments, and during acute RTIs across the first year of life for 17 respiratory viruses by quantitative PCR. Associations between viral presence, viral (sub)type, viral load, viral co-detection and symptoms were tested by generalized estimating equation (GEE) models. RESULTS: RV was the most detected virus. RV was negatively associated [GEE: adjusted odds ratio (aOR) 0.41 (95% CI 0.18-0.92)], and hMPV, RSV, parainfluenza 2 and 4 and human coronavirus HKU1 were positively associated with an acute RTI. Asymptomatic RV in early life was, however, associated with increased susceptibility to and recurrence of RTIs later in the first year of life (Kaplan-Meier survival analysis: P = 0.022). CONCLUSIONS: Respiratory viruses, including the seasonal human coronaviruses, are often detected in infants, and are often asymptomatic. Early life RV presence is, though negatively associated with an acute RTI, associated with future susceptibility to and recurrence of RTIs. Further studies on potential ecologic or immunologic mechanisms are needed to understand these observations.


Asunto(s)
Infecciones del Sistema Respiratorio , Niño , Humanos , Estudios Prospectivos , Infecciones del Sistema Respiratorio/epidemiología
10.
Nat Commun ; 13(1): 6638, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380002

RESUMEN

The gut microbiota in early life, when critical immune maturation takes place, may influence the immunogenicity of childhood vaccinations. Here we assess the association between mode of delivery, gut microbiota development in the first year of life, and mucosal antigen-specific antibody responses against pneumococcal vaccination in 101 infants at age 12 months and against meningococcal vaccination in 66 infants at age 18 months. Birth by vaginal delivery is associated with higher antibody responses against both vaccines. Relative abundances of vaginal birth-associated Bifidobacterium and Escherichia coli in the first weeks of life are positively associated with anti-pneumococcal antibody responses, and relative abundance of E. coli in the same period is also positively associated with anti-meningococcal antibody responses. In this study, we show that mode of delivery-induced microbiota profiles of the gut are associated with subsequent antibody responses to routine childhood vaccines.


Asunto(s)
Microbioma Gastrointestinal , Vacunas Meningococicas , Lactante , Embarazo , Femenino , Humanos , Escherichia coli , Bifidobacterium , Vacunación , Anticuerpos Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA